Cargando…
Machine Learning Predictor of Immune Checkpoint Blockade Response in Gastric Cancer
SIMPLE SUMMARY: This study deals with the identification of signature genes through a model using four machine learning algorithms for two cohorts of bulk and single cell RNA seq to predict immune checkpoint blockade (ICB) response in gastric cancer. Through LASSO feature selection, we identified VC...
Autores principales: | Sung, Ji-Yong, Cheong, Jae-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265060/ https://www.ncbi.nlm.nih.gov/pubmed/35804967 http://dx.doi.org/10.3390/cancers14133191 |
Ejemplares similares
-
Predictors of responses to immune checkpoint blockade in advanced melanoma
por: Jacquelot, N., et al.
Publicado: (2017) -
Metabolic predictors of response to immune checkpoint blockade therapy
por: Shorer, Ofir, et al.
Publicado: (2023) -
Gastric Cancer in the Era of Immune Checkpoint Blockade
por: Figueroa-Protti, Lucía, et al.
Publicado: (2019) -
Associations of Clinical and Molecular Characteristics with the Response to Immune Checkpoint Blockade in Advanced Gastric Cancers
por: Xu, Xiaoqing, et al.
Publicado: (2022) -
Hallmarks of response to immune checkpoint blockade
por: Cogdill, Alexandria P, et al.
Publicado: (2017)