Cargando…
GraphChrom: A Novel Graph-Based Framework for Cancer Classification Using Chromosomal Rearrangement Endpoints
SIMPLE SUMMARY: Cancer is among the leading causes of death in the United States and worldwide. Early prediction of cancers is important for the improvement of treatment outcomes and survival rates, thus resulting in significant social and economic impacts. Recent developments have focused primarily...
Autor principal: | Mirzaei, Golrokh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265123/ https://www.ncbi.nlm.nih.gov/pubmed/35804833 http://dx.doi.org/10.3390/cancers14133060 |
Ejemplares similares
-
Recovering rearranged cancer chromosomes from karyotype graphs
por: Aganezov, Sergey, et al.
Publicado: (2019) -
Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks
por: Montanari, Floriane, et al.
Publicado: (2019) -
A graph neural network framework based on preference-aware graph diffusion for recommendation
por: Shu, Tao, et al.
Publicado: (2022) -
Characterization and Classification of Electrophysiological Signals Represented as Visibility Graphs Using the Maxclique Graph
por: Rodriguez-Torres, Erika Elizabeth, et al.
Publicado: (2020) -
Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
por: Carta, Antonio, et al.
Publicado: (2022)