Cargando…
Factor Retention Using Machine Learning With Ordinal Data
Determining the number of factors in exploratory factor analysis is probably the most crucial decision when conducting the analysis as it clearly influences the meaningfulness of the results (i.e., factorial validity). A new method called the Factor Forest that combines data simulation and machine l...
Autores principales: | Goretzko, David, Bühner, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265486/ https://www.ncbi.nlm.nih.gov/pubmed/35812814 http://dx.doi.org/10.1177/01466216221089345 |
Ejemplares similares
-
Factor Retention in Exploratory Factor Analysis With Missing Data
por: Goretzko, David
Publicado: (2021) -
AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes
por: Saffari, Seyed Ehsan, et al.
Publicado: (2022) -
Clockability for Ordinal Turing Machines
por: Carl, Merlin
Publicado: (2020) -
Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
por: Zhu, Shengxue, et al.
Publicado: (2021) -
Ordinal data modeling /
por: Johnson, Valen E.
Publicado: (1999)