Cargando…

How Italy Tweeted about COVID-19: Detecting Reactions to the Pandemic from Social Media

The COVID-19 pandemic required communities throughout the world to deal with unknown threats. Using Twitter data, this study aimed to detect reactions to the outbreak in Italy and to evaluate the relationship between measures derived from social media (SM) with both national epidemiological data and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lorenzoni, Valentina, Andreozzi, Gianni, Bazzani, Andrea, Casigliani, Virginia, Pirri, Salvatore, Tavoschi, Lara, Turchetti, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265594/
https://www.ncbi.nlm.nih.gov/pubmed/35805444
http://dx.doi.org/10.3390/ijerph19137785
Descripción
Sumario:The COVID-19 pandemic required communities throughout the world to deal with unknown threats. Using Twitter data, this study aimed to detect reactions to the outbreak in Italy and to evaluate the relationship between measures derived from social media (SM) with both national epidemiological data and reports on the violations of the restrictions. The dynamics of time-series about tweets counts, emotions expressed, and themes discussed were evaluated using Italian posts regarding COVID-19 from 25 February to 4 May 2020. Considering 4,988,255 tweets, results highlight that emotions changed significantly over time with anger, disgust, fear, and sadness showing a downward trend, while joy, trust, anticipation, and surprise increased. The trend of emotions correlated significantly with national variation in confirmed cases and reports on the violations of restrictive measures. The study highlights the potential of using SM to assess emotional and behavioural reactions, delineating their possible contribution to the establishment of a decision management system during emergencies.