Cargando…
Development and Evaluation of Statistical Models Based on Machine Learning Techniques for Estimating Particulate Matter (PM(2.5) and PM(10)) Concentrations
Despite extensive research on air pollution estimation/prediction, inter-country models for estimating air pollutant concentrations in Southeast Asia have not yet been fully developed and validated owing to the lack of air quality (AQ), emission inventory and meteorological data from different count...
Autores principales: | Hong, Wan Yun, Koh, David, Yu, Liya E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265743/ https://www.ncbi.nlm.nih.gov/pubmed/35805388 http://dx.doi.org/10.3390/ijerph19137728 |
Ejemplares similares
-
Investigation into the Effect of Atmospheric Particulate Matter (PM(2.5) and PM(10)) Concentrations on GPS Signals
por: Lau, Lawrence, et al.
Publicado: (2017) -
Machine learning methods to predict particulate matter PM
(2.5)
por: Palanichamy, Naveen, et al.
Publicado: (2022) -
Morphological, Mineralogical, and Biochemical Characteristics
of Particulate Matter in Three Size Fractions (PM(10), PM(2.5), and PM(1)) in the Urban Environment
por: Ahmad, Shafiq, et al.
Publicado: (2023) -
Spatio-Temporal Variation in the Concentration of Inhalable Particulate Matter (PM(10)) in Uganda
por: Onyango, Silver, et al.
Publicado: (2019) -
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
por: Morapedi, Tshepang Duncan, et al.
Publicado: (2023)