Cargando…
Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying
Due to its high-protein content of 60–70% on dry weight, Arthrospira platensis, has been considered as one of the most sought-after protein alternatives. However, the processing of Arthrospira platensis extract (spirulina, SP) in food is usually limited due to the strong green colour and taste, as w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265850/ https://www.ncbi.nlm.nih.gov/pubmed/35804738 http://dx.doi.org/10.3390/foods11131922 |
_version_ | 1784743316605108224 |
---|---|
author | Maag, Patricia Dirr, Simon Özmutlu Karslioglu, Özlem |
author_facet | Maag, Patricia Dirr, Simon Özmutlu Karslioglu, Özlem |
author_sort | Maag, Patricia |
collection | PubMed |
description | Due to its high-protein content of 60–70% on dry weight, Arthrospira platensis, has been considered as one of the most sought-after protein alternatives. However, the processing of Arthrospira platensis extract (spirulina, SP) in food is usually limited due to the strong green colour and taste, as well as the lack of bioavailability of plant proteins. Therefore, this study aimed to increase its use in food applications through technologies such as microencapsulation by spray drying and enzymatic treatment. The effect of different combinations of maltodextrin (MD) and gum arabic (GA) as coating material were tested in ratios of 1:2 and 1:4 for Arthrospira platensis, core to wall material, respectively. Additionally, enzymatic treatment was used to investigate whether digestibility, protein solubility and powder solubility can be improved. Thermal stability was examined by differential scanning calorimetry (DSC), and colour intensity was analysed over L* a* b* colour system. The sample SP-MD1:2 showed the highest heat stability with a denaturation peak at 67 °C, while the samples SP-MD1:4 and ESP-MD1:4 revealed the best brightening effects. The crude protein content stated by the manufacturer of 67% was confirmed. Encapsulation and enzymatic hydrolysis enhance the protein solubility, under which ESP-MD1:4 had the greatest solubility at around 83%. The protein digestibility peaks were around 99% with sample SP-MD1:2. |
format | Online Article Text |
id | pubmed-9265850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92658502022-07-09 Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying Maag, Patricia Dirr, Simon Özmutlu Karslioglu, Özlem Foods Article Due to its high-protein content of 60–70% on dry weight, Arthrospira platensis, has been considered as one of the most sought-after protein alternatives. However, the processing of Arthrospira platensis extract (spirulina, SP) in food is usually limited due to the strong green colour and taste, as well as the lack of bioavailability of plant proteins. Therefore, this study aimed to increase its use in food applications through technologies such as microencapsulation by spray drying and enzymatic treatment. The effect of different combinations of maltodextrin (MD) and gum arabic (GA) as coating material were tested in ratios of 1:2 and 1:4 for Arthrospira platensis, core to wall material, respectively. Additionally, enzymatic treatment was used to investigate whether digestibility, protein solubility and powder solubility can be improved. Thermal stability was examined by differential scanning calorimetry (DSC), and colour intensity was analysed over L* a* b* colour system. The sample SP-MD1:2 showed the highest heat stability with a denaturation peak at 67 °C, while the samples SP-MD1:4 and ESP-MD1:4 revealed the best brightening effects. The crude protein content stated by the manufacturer of 67% was confirmed. Encapsulation and enzymatic hydrolysis enhance the protein solubility, under which ESP-MD1:4 had the greatest solubility at around 83%. The protein digestibility peaks were around 99% with sample SP-MD1:2. MDPI 2022-06-28 /pmc/articles/PMC9265850/ /pubmed/35804738 http://dx.doi.org/10.3390/foods11131922 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Maag, Patricia Dirr, Simon Özmutlu Karslioglu, Özlem Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying |
title | Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying |
title_full | Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying |
title_fullStr | Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying |
title_full_unstemmed | Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying |
title_short | Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying |
title_sort | investigation of bioavailability and food-processing properties of arthrospira platensis by enzymatic treatment and micro-encapsulation by spray drying |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265850/ https://www.ncbi.nlm.nih.gov/pubmed/35804738 http://dx.doi.org/10.3390/foods11131922 |
work_keys_str_mv | AT maagpatricia investigationofbioavailabilityandfoodprocessingpropertiesofarthrospiraplatensisbyenzymatictreatmentandmicroencapsulationbyspraydrying AT dirrsimon investigationofbioavailabilityandfoodprocessingpropertiesofarthrospiraplatensisbyenzymatictreatmentandmicroencapsulationbyspraydrying AT ozmutlukarsliogluozlem investigationofbioavailabilityandfoodprocessingpropertiesofarthrospiraplatensisbyenzymatictreatmentandmicroencapsulationbyspraydrying |