Cargando…

Bioavailability of Rosehip (Rosa canina L.) Infusion Phenolics Prepared by Thermal, Pulsed Electric Field and High Pressure Processing

In this study, the in vitro bioavailability of rosehip infusion phenolics, mainly catechin, as a response to conventional and non-thermal treatments by combining gastrointestinal digestion and a Caco-2 cell culture model, was investigated. After application of thermal treatment (TT, 85 °C/10 min), h...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozkan, Gulay, Esatbeyoglu, Tuba, Capanoglu, Esra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265957/
https://www.ncbi.nlm.nih.gov/pubmed/35804770
http://dx.doi.org/10.3390/foods11131955
Descripción
Sumario:In this study, the in vitro bioavailability of rosehip infusion phenolics, mainly catechin, as a response to conventional and non-thermal treatments by combining gastrointestinal digestion and a Caco-2 cell culture model, was investigated. After application of thermal treatment (TT, 85 °C/10 min), high pressure (HPP, 600 MPa/5 min) or pulsed electric field (PEF, 15 kJ/kg) processing, all samples were subjected to simulated gastrointestinal digestion. Then, the amount of maximum non-toxic digest ratio was determined by the cytotoxicity sulforhodamine B (SRB) assay. Next, Caco-2 cells were exposed to 1:5 (v/v) times diluted digests in order to simulate the transepithelial transportation of catechin. Results showed that non-thermally processed samples (5.19 and 4.62% for HPP and PEF, respectively) exhibited greater transportation across the epithelial cell layer compared to than that of the TT-treated sample (3.42%). The present study highlighted that HPP and PEF, as non-thermal treatments at optimized conditions for infusions or beverages, can be utilized in order to enhance the nutritional quality of the final products.