Cargando…
Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines
Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altere...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266179/ https://www.ncbi.nlm.nih.gov/pubmed/35805156 http://dx.doi.org/10.3390/cells11132072 |
_version_ | 1784743400202829824 |
---|---|
author | Perbellini, Omar Cavallini, Chiara Chignola, Roberto Galasso, Marilisa Scupoli, Maria T. |
author_facet | Perbellini, Omar Cavallini, Chiara Chignola, Roberto Galasso, Marilisa Scupoli, Maria T. |
author_sort | Perbellini, Omar |
collection | PubMed |
description | Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with H(2)O(2), PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H(2)O(2), identifies Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell lines. Characterizing signaling network profiles across individual leukemia could provide the basis to identify molecular targets for personalized T-ALL therapy. |
format | Online Article Text |
id | pubmed-9266179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92661792022-07-09 Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines Perbellini, Omar Cavallini, Chiara Chignola, Roberto Galasso, Marilisa Scupoli, Maria T. Cells Article Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with H(2)O(2), PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H(2)O(2), identifies Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell lines. Characterizing signaling network profiles across individual leukemia could provide the basis to identify molecular targets for personalized T-ALL therapy. MDPI 2022-06-29 /pmc/articles/PMC9266179/ /pubmed/35805156 http://dx.doi.org/10.3390/cells11132072 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Perbellini, Omar Cavallini, Chiara Chignola, Roberto Galasso, Marilisa Scupoli, Maria T. Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines |
title | Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines |
title_full | Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines |
title_fullStr | Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines |
title_full_unstemmed | Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines |
title_short | Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines |
title_sort | phospho-specific flow cytometry reveals signaling heterogeneity in t-cell acute lymphoblastic leukemia cell lines |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266179/ https://www.ncbi.nlm.nih.gov/pubmed/35805156 http://dx.doi.org/10.3390/cells11132072 |
work_keys_str_mv | AT perbelliniomar phosphospecificflowcytometryrevealssignalingheterogeneityintcellacutelymphoblasticleukemiacelllines AT cavallinichiara phosphospecificflowcytometryrevealssignalingheterogeneityintcellacutelymphoblasticleukemiacelllines AT chignolaroberto phosphospecificflowcytometryrevealssignalingheterogeneityintcellacutelymphoblasticleukemiacelllines AT galassomarilisa phosphospecificflowcytometryrevealssignalingheterogeneityintcellacutelymphoblasticleukemiacelllines AT scupolimariat phosphospecificflowcytometryrevealssignalingheterogeneityintcellacutelymphoblasticleukemiacelllines |