Cargando…
Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method
Nitrophenols are toxic substances that present humans and animals with the risk of deformities, mutations, or cancer when ingested or inhaled. Traditional water treatment technologies have high costs and low p-nitrophenol (PNP) removal efficiency. Therefore, an ultraviolet (UV)-activated granular ac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266466/ https://www.ncbi.nlm.nih.gov/pubmed/35805828 http://dx.doi.org/10.3390/ijerph19138169 |
Sumario: | Nitrophenols are toxic substances that present humans and animals with the risk of deformities, mutations, or cancer when ingested or inhaled. Traditional water treatment technologies have high costs and low p-nitrophenol (PNP) removal efficiency. Therefore, an ultraviolet (UV)-activated granular activated carbon supported nano-zero-valent-iron-cobalt (Co-nZVI/GAC) activated persulfate (PS) system was constructed to efficiently degrade PNP with Co-nZVI/GAC dosage, PS concentration, UV power, and pH as dependent variables and PNP removal rate as response values. A mathematical model between the factors and response values was developed using a central composite design (CCD) model. The model-fitting results showed that the PNP degradation rate was 96.7%, close to the predicted value of 98.05 when validation tests were performed under Co-nZVI/GAC injection conditions of 0.827 g/L, PS concentration of 3.811 mmol/L, UV power of 39.496 W, and pH of 2.838. This study demonstrates the feasibility of the response surface methodology for optimizing the UV-activated Co-nZVI/GAC-activated PS degradation of PNP. |
---|