Cargando…

Telomere-to-telomere genome assembly of Phaeodactylum tricornutum

Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford...

Descripción completa

Detalles Bibliográficos
Autores principales: Giguere, Daniel J., Bahcheli, Alexander T., Slattery, Samuel S., Patel, Rushali R., Browne, Tyler S., Flatley, Martin, Karas, Bogumil J., Edgell, David R., Gloor, Gregory B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266582/
https://www.ncbi.nlm.nih.gov/pubmed/35811822
http://dx.doi.org/10.7717/peerj.13607
_version_ 1784743502889877504
author Giguere, Daniel J.
Bahcheli, Alexander T.
Slattery, Samuel S.
Patel, Rushali R.
Browne, Tyler S.
Flatley, Martin
Karas, Bogumil J.
Edgell, David R.
Gloor, Gregory B.
author_facet Giguere, Daniel J.
Bahcheli, Alexander T.
Slattery, Samuel S.
Patel, Rushali R.
Browne, Tyler S.
Flatley, Martin
Karas, Bogumil J.
Edgell, David R.
Gloor, Gregory B.
author_sort Giguere, Daniel J.
collection PubMed
description Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes.
format Online
Article
Text
id pubmed-9266582
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-92665822022-07-09 Telomere-to-telomere genome assembly of Phaeodactylum tricornutum Giguere, Daniel J. Bahcheli, Alexander T. Slattery, Samuel S. Patel, Rushali R. Browne, Tyler S. Flatley, Martin Karas, Bogumil J. Edgell, David R. Gloor, Gregory B. PeerJ Bioinformatics Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes. PeerJ Inc. 2022-07-05 /pmc/articles/PMC9266582/ /pubmed/35811822 http://dx.doi.org/10.7717/peerj.13607 Text en ©2022 Giguere et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Bioinformatics
Giguere, Daniel J.
Bahcheli, Alexander T.
Slattery, Samuel S.
Patel, Rushali R.
Browne, Tyler S.
Flatley, Martin
Karas, Bogumil J.
Edgell, David R.
Gloor, Gregory B.
Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
title Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
title_full Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
title_fullStr Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
title_full_unstemmed Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
title_short Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
title_sort telomere-to-telomere genome assembly of phaeodactylum tricornutum
topic Bioinformatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266582/
https://www.ncbi.nlm.nih.gov/pubmed/35811822
http://dx.doi.org/10.7717/peerj.13607
work_keys_str_mv AT gigueredanielj telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT bahchelialexandert telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT slatterysamuels telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT patelrushalir telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT brownetylers telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT flatleymartin telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT karasbogumilj telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT edgelldavidr telomeretotelomeregenomeassemblyofphaeodactylumtricornutum
AT gloorgregoryb telomeretotelomeregenomeassemblyofphaeodactylumtricornutum