Cargando…
Telomere-to-telomere genome assembly of Phaeodactylum tricornutum
Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266582/ https://www.ncbi.nlm.nih.gov/pubmed/35811822 http://dx.doi.org/10.7717/peerj.13607 |
_version_ | 1784743502889877504 |
---|---|
author | Giguere, Daniel J. Bahcheli, Alexander T. Slattery, Samuel S. Patel, Rushali R. Browne, Tyler S. Flatley, Martin Karas, Bogumil J. Edgell, David R. Gloor, Gregory B. |
author_facet | Giguere, Daniel J. Bahcheli, Alexander T. Slattery, Samuel S. Patel, Rushali R. Browne, Tyler S. Flatley, Martin Karas, Bogumil J. Edgell, David R. Gloor, Gregory B. |
author_sort | Giguere, Daniel J. |
collection | PubMed |
description | Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes. |
format | Online Article Text |
id | pubmed-9266582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92665822022-07-09 Telomere-to-telomere genome assembly of Phaeodactylum tricornutum Giguere, Daniel J. Bahcheli, Alexander T. Slattery, Samuel S. Patel, Rushali R. Browne, Tyler S. Flatley, Martin Karas, Bogumil J. Edgell, David R. Gloor, Gregory B. PeerJ Bioinformatics Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes. PeerJ Inc. 2022-07-05 /pmc/articles/PMC9266582/ /pubmed/35811822 http://dx.doi.org/10.7717/peerj.13607 Text en ©2022 Giguere et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Giguere, Daniel J. Bahcheli, Alexander T. Slattery, Samuel S. Patel, Rushali R. Browne, Tyler S. Flatley, Martin Karas, Bogumil J. Edgell, David R. Gloor, Gregory B. Telomere-to-telomere genome assembly of Phaeodactylum tricornutum |
title | Telomere-to-telomere genome assembly of Phaeodactylum tricornutum |
title_full | Telomere-to-telomere genome assembly of Phaeodactylum tricornutum |
title_fullStr | Telomere-to-telomere genome assembly of Phaeodactylum tricornutum |
title_full_unstemmed | Telomere-to-telomere genome assembly of Phaeodactylum tricornutum |
title_short | Telomere-to-telomere genome assembly of Phaeodactylum tricornutum |
title_sort | telomere-to-telomere genome assembly of phaeodactylum tricornutum |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266582/ https://www.ncbi.nlm.nih.gov/pubmed/35811822 http://dx.doi.org/10.7717/peerj.13607 |
work_keys_str_mv | AT gigueredanielj telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT bahchelialexandert telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT slatterysamuels telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT patelrushalir telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT brownetylers telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT flatleymartin telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT karasbogumilj telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT edgelldavidr telomeretotelomeregenomeassemblyofphaeodactylumtricornutum AT gloorgregoryb telomeretotelomeregenomeassemblyofphaeodactylumtricornutum |