Cargando…
Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer
Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266743/ https://www.ncbi.nlm.nih.gov/pubmed/35806316 http://dx.doi.org/10.3390/ijms23137304 |
_version_ | 1784743543505420288 |
---|---|
author | Fedorov, Vladimir Kholina, Ekaterina Khruschev, Sergei Kovalenko, Ilya Rubin, Andrew Strakhovskaya, Marina |
author_facet | Fedorov, Vladimir Kholina, Ekaterina Khruschev, Sergei Kovalenko, Ilya Rubin, Andrew Strakhovskaya, Marina |
author_sort | Fedorov, Vladimir |
collection | PubMed |
description | Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed by D. Korkin and S.-J. Marrink’s scientific groups, we created an electrostatic map of the external surface of SARS-CoV-2 and found a highly heterogeneous distribution of the electrostatic potential field of the viral envelope. Numerous negative patches originate mainly from negatively charged lipid domains in the viral membrane and negatively charged areas on the “stalks” of the spike (S) proteins. Membrane (M) and envelope (E) proteins with the total positive charge tend to colocalize with the negatively charged lipids. In the E protein pentamer exposed to the outer surface, negatively charged glutamate residues and surrounding lipids form a negative electrostatic potential ring around the channel entrance. We simulated the interaction of the antiviral octacationic photosensitizer octakis(cholinyl)zinc phthalocyanine with the surface structures of the entire model virion using the Brownian dynamics computational method implemented in ProKSim software (version r661). All mentioned negatively charged envelope components attracted the photosensitizer molecules and are thus potential targets for reactive oxygen generated in photosensitized reactions. |
format | Online Article Text |
id | pubmed-9266743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92667432022-07-09 Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer Fedorov, Vladimir Kholina, Ekaterina Khruschev, Sergei Kovalenko, Ilya Rubin, Andrew Strakhovskaya, Marina Int J Mol Sci Article Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed by D. Korkin and S.-J. Marrink’s scientific groups, we created an electrostatic map of the external surface of SARS-CoV-2 and found a highly heterogeneous distribution of the electrostatic potential field of the viral envelope. Numerous negative patches originate mainly from negatively charged lipid domains in the viral membrane and negatively charged areas on the “stalks” of the spike (S) proteins. Membrane (M) and envelope (E) proteins with the total positive charge tend to colocalize with the negatively charged lipids. In the E protein pentamer exposed to the outer surface, negatively charged glutamate residues and surrounding lipids form a negative electrostatic potential ring around the channel entrance. We simulated the interaction of the antiviral octacationic photosensitizer octakis(cholinyl)zinc phthalocyanine with the surface structures of the entire model virion using the Brownian dynamics computational method implemented in ProKSim software (version r661). All mentioned negatively charged envelope components attracted the photosensitizer molecules and are thus potential targets for reactive oxygen generated in photosensitized reactions. MDPI 2022-06-30 /pmc/articles/PMC9266743/ /pubmed/35806316 http://dx.doi.org/10.3390/ijms23137304 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fedorov, Vladimir Kholina, Ekaterina Khruschev, Sergei Kovalenko, Ilya Rubin, Andrew Strakhovskaya, Marina Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer |
title | Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer |
title_full | Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer |
title_fullStr | Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer |
title_full_unstemmed | Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer |
title_short | Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer |
title_sort | electrostatic map of the sars-cov-2 virion specifies binding sites of the antiviral cationic photosensitizer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266743/ https://www.ncbi.nlm.nih.gov/pubmed/35806316 http://dx.doi.org/10.3390/ijms23137304 |
work_keys_str_mv | AT fedorovvladimir electrostaticmapofthesarscov2virionspecifiesbindingsitesoftheantiviralcationicphotosensitizer AT kholinaekaterina electrostaticmapofthesarscov2virionspecifiesbindingsitesoftheantiviralcationicphotosensitizer AT khruschevsergei electrostaticmapofthesarscov2virionspecifiesbindingsitesoftheantiviralcationicphotosensitizer AT kovalenkoilya electrostaticmapofthesarscov2virionspecifiesbindingsitesoftheantiviralcationicphotosensitizer AT rubinandrew electrostaticmapofthesarscov2virionspecifiesbindingsitesoftheantiviralcationicphotosensitizer AT strakhovskayamarina electrostaticmapofthesarscov2virionspecifiesbindingsitesoftheantiviralcationicphotosensitizer |