Cargando…

Copper-Doped Bioactive Glass/Poly (Ether-Ether-Ketone) Composite as an Orbital Enucleation Implant in a Rabbit Model: An In Vivo Study

An orbital enucleation implant is used to compensate for the orbital volume deficits in the absence of the globe. In this work, copper-doped bioactive glass in poly(ether-ether-ketone) (CuBG/PEEK) composite scaffolds as an orbital enucleation implant were designed and fabricated by cool-pressed sint...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Ke, Zhao, Mengen, Wu, Zhaoying, Zhang, Wei, Zhang, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267279/
https://www.ncbi.nlm.nih.gov/pubmed/35806535
http://dx.doi.org/10.3390/ma15134410
Descripción
Sumario:An orbital enucleation implant is used to compensate for the orbital volume deficits in the absence of the globe. In this work, copper-doped bioactive glass in poly(ether-ether-ketone) (CuBG/PEEK) composite scaffolds as an orbital enucleation implant were designed and fabricated by cool-pressed sintering and particle-leaching techniques, the incorporation of copper-doped bioactive glass in poly(ether-ether-ketone) (CuBG/PEEK) was expected to significantly improve the biocompatibility of the PEEK implant. The consequences after implantation of the CuBG/PEEK composite scaffolds in experimental, eviscerated rabbits was observed and assayed in term of histopathological examination. In detail, 24 rabbits were randomly divided into three groups: Group A, PEEK scaffolds; Group B, 20% CuBG/PEEK composite scaffolds; Group C, 40% CuBG/PEEK composite scaffolds; the rabbits were sacrificed at week 4 and week 12, followed by histochemical staining and observation. As a result, the PEEK group exhibited poor material exposure and tissue healing, while the CuBG/PEEK scaffolds showed good biocompatibility, and the 40% CuBG/PEEK composite scaffold exhibited the best performance in angiogenesis and tissue repair. Therefore, this study demonstrates the potential of CuBG/PEEK composite scaffolds as an orbital enucleation implant.