Cargando…
An Improved U-Net Image Segmentation Method and Its Application for Metallic Grain Size Statistics
Grain size is one of the most important parameters for metallographic microstructure analysis, which can partly determine the material performance. The measurement of grain size is based on accurate image segmentation methods, which include traditional image processing methods and emerging machine-l...
Autores principales: | Shi, Peng, Duan, Mengmeng, Yang, Lifang, Feng, Wei, Ding, Lianhong, Jiang, Liwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267311/ https://www.ncbi.nlm.nih.gov/pubmed/35806543 http://dx.doi.org/10.3390/ma15134417 |
Ejemplares similares
-
UNetGE: A U-Net-Based Software at Automatic Grain Extraction for Image Analysis of the Grain Size and Shape Characteristics
por: Zeng, Ling, et al.
Publicado: (2022) -
U-Net-Based Medical Image Segmentation
por: Yin, Xiao-Xia, et al.
Publicado: (2022) -
Segmentation and recognition of breast ultrasound images based on an expanded U-Net
por: Guo, Yanjun, et al.
Publicado: (2021) -
Modality preserving U-Net for segmentation of multimodal medical images
por: Wu, Bingxuan, et al.
Publicado: (2023) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)