Cargando…

Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties

In this study, we report a low-temperature approach involving a combination of a sol–gel hydrothermal method and spark plasma sintering (SPS) for the fabrication of cubic phase ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 2.00) bulk ceramics. The cubic-ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.50) bulk ceramics were success...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Hui, Mei, Jian, Xu, Yan, Zhang, Xu, Li, Jing, Xu, Xiaoyong, Zhang, Yang, Wang, Xiaodong, Li, Mingling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267346/
https://www.ncbi.nlm.nih.gov/pubmed/35806769
http://dx.doi.org/10.3390/ma15134650
_version_ 1784743696903700480
author Wei, Hui
Mei, Jian
Xu, Yan
Zhang, Xu
Li, Jing
Xu, Xiaoyong
Zhang, Yang
Wang, Xiaodong
Li, Mingling
author_facet Wei, Hui
Mei, Jian
Xu, Yan
Zhang, Xu
Li, Jing
Xu, Xiaoyong
Zhang, Yang
Wang, Xiaodong
Li, Mingling
author_sort Wei, Hui
collection PubMed
description In this study, we report a low-temperature approach involving a combination of a sol–gel hydrothermal method and spark plasma sintering (SPS) for the fabrication of cubic phase ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 2.00) bulk ceramics. The cubic-ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.50) bulk ceramics were successfully synthesized within a temperature range of 623–923 K in a very short amount of time (6–7 min), which is several hundred degrees lower than the typical solid-state approach. Meanwhile, scanning electron microscopy and density measurements revealed that the cubic-ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.50) bulk ceramics were densified to more than 90%. X-ray diffraction (XRD) results revealed that the cubic phase ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.5) bulk ceramics, as well as the sol–gel-hydrothermally synthesized ZrW(2−x)Mo(x)O(7)(OH)(2)·2H(2)O precursors correspond to their respective pure single phases. The bulk ceramics demonstrated negative thermal expansion characteristics, and the coefficients of negative thermal expansion were shown to be tunable in cubic-ZrW(2−x)Mo(x)O(8) bulk ceramics with respect to x value and sintering temperature. The cubic-ZrW(2−x)Mo(x)O(8) solid solution can thus have potential applications in electronic devices such as heat sinks that require regulation of thermal expansion.
format Online
Article
Text
id pubmed-9267346
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92673462022-07-09 Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties Wei, Hui Mei, Jian Xu, Yan Zhang, Xu Li, Jing Xu, Xiaoyong Zhang, Yang Wang, Xiaodong Li, Mingling Materials (Basel) Article In this study, we report a low-temperature approach involving a combination of a sol–gel hydrothermal method and spark plasma sintering (SPS) for the fabrication of cubic phase ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 2.00) bulk ceramics. The cubic-ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.50) bulk ceramics were successfully synthesized within a temperature range of 623–923 K in a very short amount of time (6–7 min), which is several hundred degrees lower than the typical solid-state approach. Meanwhile, scanning electron microscopy and density measurements revealed that the cubic-ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.50) bulk ceramics were densified to more than 90%. X-ray diffraction (XRD) results revealed that the cubic phase ZrW(2−x)Mo(x)O(8) (0.00 ≤ x ≤ 1.5) bulk ceramics, as well as the sol–gel-hydrothermally synthesized ZrW(2−x)Mo(x)O(7)(OH)(2)·2H(2)O precursors correspond to their respective pure single phases. The bulk ceramics demonstrated negative thermal expansion characteristics, and the coefficients of negative thermal expansion were shown to be tunable in cubic-ZrW(2−x)Mo(x)O(8) bulk ceramics with respect to x value and sintering temperature. The cubic-ZrW(2−x)Mo(x)O(8) solid solution can thus have potential applications in electronic devices such as heat sinks that require regulation of thermal expansion. MDPI 2022-07-01 /pmc/articles/PMC9267346/ /pubmed/35806769 http://dx.doi.org/10.3390/ma15134650 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wei, Hui
Mei, Jian
Xu, Yan
Zhang, Xu
Li, Jing
Xu, Xiaoyong
Zhang, Yang
Wang, Xiaodong
Li, Mingling
Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties
title Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties
title_full Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties
title_fullStr Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties
title_full_unstemmed Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties
title_short Low-Temperature Rapid Sintering of Dense Cubic Phase ZrW(2−x)Mo(x)O(8) Ceramics by Spark Plasma Sintering and Evaluation of Its Thermal Properties
title_sort low-temperature rapid sintering of dense cubic phase zrw(2−x)mo(x)o(8) ceramics by spark plasma sintering and evaluation of its thermal properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267346/
https://www.ncbi.nlm.nih.gov/pubmed/35806769
http://dx.doi.org/10.3390/ma15134650
work_keys_str_mv AT weihui lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT meijian lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT xuyan lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT zhangxu lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT lijing lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT xuxiaoyong lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT zhangyang lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT wangxiaodong lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties
AT limingling lowtemperaturerapidsinteringofdensecubicphasezrw2xmoxo8ceramicsbysparkplasmasinteringandevaluationofitsthermalproperties