Cargando…

Effect of Different Laser Groove Texture Collation Frequency on Tribological Properties of 0Cr17Ni7Al Stainless Steel

Laser surface texture is very effective in antifriction systems, but its applications and research in dry friction are not enough. In this study, the groove texture was prepared on the surface of 0Cr17Ni7Al stainless steel, a common material of sliding bearing, by nanosecond and femtosecond laser, r...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Liguang, Ma, Wensuo, Gao, Fei, Xi, Shiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267361/
https://www.ncbi.nlm.nih.gov/pubmed/35806542
http://dx.doi.org/10.3390/ma15134419
Descripción
Sumario:Laser surface texture is very effective in antifriction systems, but its applications and research in dry friction are not enough. In this study, the groove texture was prepared on the surface of 0Cr17Ni7Al stainless steel, a common material of sliding bearing, by nanosecond and femtosecond laser, respectively. The tribological properties of the two kinds of laser groove textures with different collision frequencies were studied in depth. The results show that the friction coefficients of groove texture prepared by nanosecond and picosecond lasers are lower than that of the untextured surface. The antifriction characteristics of the laser texture are very good. The average friction coefficient of nanosecond texture at the rotation radius of 15 mm is Z = 0.7318. The best friction-reducing effect is achieved. In general, the friction coefficient of nanosecond texture is lower than that of picosecond texture. When the friction radius is 22.5 mm and the number of collisions is 24,000, the lowest picosecond texture wear rate is H = 3.342 × 10(−4) mm(3)/N·mm. However, when the radius is 15 mm and the collision frequency is 36,000 times, the wear rate of nanosecond texture reaches the highest H = 13.680 × 10(−4) mm(3)/N·mm. The wear rate of the untextured surface has been exceeded. It can be seen that not all rotation radius textures are more wear-resistant than untextured surfaces. In addition, nanosecond groove texture and picosecond groove texture seem to produce different tribological properties. It is found that, under the same friction experimental conditions, different collision frequencies will affect the friction and wear properties of nanosecond and picosecond groove-textured surfaces.