Cargando…

A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel

The machined-surface integrity plays a critical role in corrosion resistance and fatigue properties of ultra-high-strength steels. This work develops a multiphysics model for predicting the microstructure changes and microhardness of machined AerMet100 steel. The variations of stress, strain and tem...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wenqian, Chen, Xupeng, Yang, Chongwen, Wang, Xuelin, Zhang, Yansong, Li, Yongchun, Xue, Huan, Zheng, Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267367/
https://www.ncbi.nlm.nih.gov/pubmed/35806520
http://dx.doi.org/10.3390/ma15134395
_version_ 1784743702166503424
author Zhang, Wenqian
Chen, Xupeng
Yang, Chongwen
Wang, Xuelin
Zhang, Yansong
Li, Yongchun
Xue, Huan
Zheng, Zhong
author_facet Zhang, Wenqian
Chen, Xupeng
Yang, Chongwen
Wang, Xuelin
Zhang, Yansong
Li, Yongchun
Xue, Huan
Zheng, Zhong
author_sort Zhang, Wenqian
collection PubMed
description The machined-surface integrity plays a critical role in corrosion resistance and fatigue properties of ultra-high-strength steels. This work develops a multiphysics model for predicting the microstructure changes and microhardness of machined AerMet100 steel. The variations of stress, strain and temperature of the machined workpiece are evaluated by constructing a finite-element model of the orthogonal cutting process. Based on the multiphysics fields, the analytical models of phase transformation and dislocation density evolution are built up. The white layer is modeled according to the phase-transformation mechanism and the effects of stress and plastic strain on real phase-transformation temperature are taken into consideration. The microhardness changes are predicted by a model that accounts for both dislocation density and phase-transformation evolution processes. Experimental tests are carried out for model validation. The predicted results of cutting force, white-layer thickness and microhardness are in good agreement with the measured data. Additionally, from the proposed model, the correlation between the machined-surface characteristics and processing parameters is established.
format Online
Article
Text
id pubmed-9267367
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92673672022-07-09 A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel Zhang, Wenqian Chen, Xupeng Yang, Chongwen Wang, Xuelin Zhang, Yansong Li, Yongchun Xue, Huan Zheng, Zhong Materials (Basel) Article The machined-surface integrity plays a critical role in corrosion resistance and fatigue properties of ultra-high-strength steels. This work develops a multiphysics model for predicting the microstructure changes and microhardness of machined AerMet100 steel. The variations of stress, strain and temperature of the machined workpiece are evaluated by constructing a finite-element model of the orthogonal cutting process. Based on the multiphysics fields, the analytical models of phase transformation and dislocation density evolution are built up. The white layer is modeled according to the phase-transformation mechanism and the effects of stress and plastic strain on real phase-transformation temperature are taken into consideration. The microhardness changes are predicted by a model that accounts for both dislocation density and phase-transformation evolution processes. Experimental tests are carried out for model validation. The predicted results of cutting force, white-layer thickness and microhardness are in good agreement with the measured data. Additionally, from the proposed model, the correlation between the machined-surface characteristics and processing parameters is established. MDPI 2022-06-21 /pmc/articles/PMC9267367/ /pubmed/35806520 http://dx.doi.org/10.3390/ma15134395 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Wenqian
Chen, Xupeng
Yang, Chongwen
Wang, Xuelin
Zhang, Yansong
Li, Yongchun
Xue, Huan
Zheng, Zhong
A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
title A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
title_full A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
title_fullStr A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
title_full_unstemmed A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
title_short A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
title_sort multiphysics model for predicting microstructure changes and microhardness of machined aermet100 steel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267367/
https://www.ncbi.nlm.nih.gov/pubmed/35806520
http://dx.doi.org/10.3390/ma15134395
work_keys_str_mv AT zhangwenqian amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT chenxupeng amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT yangchongwen amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT wangxuelin amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT zhangyansong amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT liyongchun amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT xuehuan amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT zhengzhong amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT zhangwenqian multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT chenxupeng multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT yangchongwen multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT wangxuelin multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT zhangyansong multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT liyongchun multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT xuehuan multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel
AT zhengzhong multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel