Cargando…
A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel
The machined-surface integrity plays a critical role in corrosion resistance and fatigue properties of ultra-high-strength steels. This work develops a multiphysics model for predicting the microstructure changes and microhardness of machined AerMet100 steel. The variations of stress, strain and tem...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267367/ https://www.ncbi.nlm.nih.gov/pubmed/35806520 http://dx.doi.org/10.3390/ma15134395 |
_version_ | 1784743702166503424 |
---|---|
author | Zhang, Wenqian Chen, Xupeng Yang, Chongwen Wang, Xuelin Zhang, Yansong Li, Yongchun Xue, Huan Zheng, Zhong |
author_facet | Zhang, Wenqian Chen, Xupeng Yang, Chongwen Wang, Xuelin Zhang, Yansong Li, Yongchun Xue, Huan Zheng, Zhong |
author_sort | Zhang, Wenqian |
collection | PubMed |
description | The machined-surface integrity plays a critical role in corrosion resistance and fatigue properties of ultra-high-strength steels. This work develops a multiphysics model for predicting the microstructure changes and microhardness of machined AerMet100 steel. The variations of stress, strain and temperature of the machined workpiece are evaluated by constructing a finite-element model of the orthogonal cutting process. Based on the multiphysics fields, the analytical models of phase transformation and dislocation density evolution are built up. The white layer is modeled according to the phase-transformation mechanism and the effects of stress and plastic strain on real phase-transformation temperature are taken into consideration. The microhardness changes are predicted by a model that accounts for both dislocation density and phase-transformation evolution processes. Experimental tests are carried out for model validation. The predicted results of cutting force, white-layer thickness and microhardness are in good agreement with the measured data. Additionally, from the proposed model, the correlation between the machined-surface characteristics and processing parameters is established. |
format | Online Article Text |
id | pubmed-9267367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92673672022-07-09 A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel Zhang, Wenqian Chen, Xupeng Yang, Chongwen Wang, Xuelin Zhang, Yansong Li, Yongchun Xue, Huan Zheng, Zhong Materials (Basel) Article The machined-surface integrity plays a critical role in corrosion resistance and fatigue properties of ultra-high-strength steels. This work develops a multiphysics model for predicting the microstructure changes and microhardness of machined AerMet100 steel. The variations of stress, strain and temperature of the machined workpiece are evaluated by constructing a finite-element model of the orthogonal cutting process. Based on the multiphysics fields, the analytical models of phase transformation and dislocation density evolution are built up. The white layer is modeled according to the phase-transformation mechanism and the effects of stress and plastic strain on real phase-transformation temperature are taken into consideration. The microhardness changes are predicted by a model that accounts for both dislocation density and phase-transformation evolution processes. Experimental tests are carried out for model validation. The predicted results of cutting force, white-layer thickness and microhardness are in good agreement with the measured data. Additionally, from the proposed model, the correlation between the machined-surface characteristics and processing parameters is established. MDPI 2022-06-21 /pmc/articles/PMC9267367/ /pubmed/35806520 http://dx.doi.org/10.3390/ma15134395 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Wenqian Chen, Xupeng Yang, Chongwen Wang, Xuelin Zhang, Yansong Li, Yongchun Xue, Huan Zheng, Zhong A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel |
title | A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel |
title_full | A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel |
title_fullStr | A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel |
title_full_unstemmed | A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel |
title_short | A Multiphysics Model for Predicting Microstructure Changes and Microhardness of Machined AerMet100 Steel |
title_sort | multiphysics model for predicting microstructure changes and microhardness of machined aermet100 steel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267367/ https://www.ncbi.nlm.nih.gov/pubmed/35806520 http://dx.doi.org/10.3390/ma15134395 |
work_keys_str_mv | AT zhangwenqian amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT chenxupeng amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT yangchongwen amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT wangxuelin amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT zhangyansong amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT liyongchun amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT xuehuan amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT zhengzhong amultiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT zhangwenqian multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT chenxupeng multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT yangchongwen multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT wangxuelin multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT zhangyansong multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT liyongchun multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT xuehuan multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel AT zhengzhong multiphysicsmodelforpredictingmicrostructurechangesandmicrohardnessofmachinedaermet100steel |