Cargando…
Design and Fabrication of Extremely Lightweight Truss-Structured Metal Mirrors
Three-dimensional printing, also called additive manufacturing (AM), offers a new vision for optical components in terms of weight reduction and strength improvement. A truss, which is a triangulated system of members that are structured and connected in such a way that they mainly bear axial force,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267368/ https://www.ncbi.nlm.nih.gov/pubmed/35806686 http://dx.doi.org/10.3390/ma15134562 |
Sumario: | Three-dimensional printing, also called additive manufacturing (AM), offers a new vision for optical components in terms of weight reduction and strength improvement. A truss, which is a triangulated system of members that are structured and connected in such a way that they mainly bear axial force, is commonly used in steel structures to improve stiffness and reduce weight. Combining these two technologies, an extremely lightweight truss-structured mirror was proposed. First, the finite element analyses (FEA) on surface shape deviation and modal properties were carried out. Results showed that the mirrors had sufficient stiffness and a high weight reduction of up to 85%. In order to verify their performance, the truss-structured mirror blanks were fabricated with AM technology. After that, both the preprocessing and the postprocessing of the mirrors were carried out. The results show that without NiP coating, a surface shape deviation of 0.353λ (PV) and 0.028 λ (RMS) (λ = 632.8 nm) with a roughness of Ra 2.8 nm, could be achieved. Therefore, the truss-structured mirrors in this study have the characteristics of being extremely lightweight and having improved stiffness as well as strong temperature stability. |
---|