Cargando…
Recent Advances in Metal-Based Nanoparticle-Mediated Biological Effects in Arabidopsis thaliana: A Mini Review
The widespread application of metal-based nanoparticles (MNPs) has prompted great interest in nano-biosafety. Consequently, as more and more MNPs are released into the environment and eventually sink into the soil, plants, as an essential component of the ecosystem, are at greater risk of exposure a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267373/ https://www.ncbi.nlm.nih.gov/pubmed/35806668 http://dx.doi.org/10.3390/ma15134539 |
Sumario: | The widespread application of metal-based nanoparticles (MNPs) has prompted great interest in nano-biosafety. Consequently, as more and more MNPs are released into the environment and eventually sink into the soil, plants, as an essential component of the ecosystem, are at greater risk of exposure and response to these MNPs. Therefore, to understand the potential impact of nanoparticles on the environment, their effects should be thoroughly investigated. Arabidopsis (Arabidopsis thaliana L.) is an ideal model plant for studying the impact of environmental stress on plants’ growth and development because the ways in which Arabidopsis adapt to these stresses resemble those of many plants, and therefore, conclusions obtained from these scientific studies have often been used as the universal reference for other plants. This study reviewed the main findings of present-day interactions between MNPs and Arabidopsis thaliana from plant internalization to phytotoxic effects to reveal the mechanisms by which nanomaterials affect plant growth and development. We also analyzed the remaining unsolved problems in this field and provide a perspective for future research directions. |
---|