Cargando…

Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers

Graft copolymers based on a choline ionic liquid (IL), [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), were obtained by atom transfer radical polymerization. The presence of chloride counterions in the trimethylammonium groups promoted anion exchange to introduce fusidate anions (FUS,...

Descripción completa

Detalles Bibliográficos
Autores principales: Niesyto, Katarzyna, Mazur, Aleksy, Neugebauer, Dorota
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267481/
https://www.ncbi.nlm.nih.gov/pubmed/35806581
http://dx.doi.org/10.3390/ma15134457
Descripción
Sumario:Graft copolymers based on a choline ionic liquid (IL), [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), were obtained by atom transfer radical polymerization. The presence of chloride counterions in the trimethylammonium groups promoted anion exchange to introduce fusidate anions (FUS, 32–55 mol.%) as the pharmaceutical anions. Both the choline-based IL copolymers and their ionic drug-carrier conjugates (FUS systems as the first type, 26–208 nm) formed micellar structures (CMC = 0.011–0.025 mg/mL). The amphiphilic systems were advantageous for the encapsulation of rifampicin (RIF, 40–67 mol.%), a well-known antibiotic, resulting in single-drug (RIF systems as the second type, 40–95 nm) and dual-drug systems (FUS/RIF as the third type, 31–65 nm). The obtained systems released significant amounts of drugs (FUS > RIF), which could be adjusted by the content of ionic units and the length of the copolymer side chains. The dual-drug systems released 31–55% FUS (4.3–5.6 μg/mL) and 19–31% RIF (3.3–4.0 μg/mL), and these results were slightly lower than those for the single-drug systems, reaching 45–81% for FUS (3.8–8.2 μg/mL) and 20–37% for RIF (3.4–4.0 μg/mL). The designed polymer systems show potential as co-delivery systems for combined therapy against drug-resistant strains using two drugs in one formula instead of the separate delivery of two drugs.