Cargando…
Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics
Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267621/ https://www.ncbi.nlm.nih.gov/pubmed/35806767 http://dx.doi.org/10.3390/ma15134645 |
_version_ | 1784743774202626048 |
---|---|
author | Shah, Chirag Bosse, Stefan von Hehl, Axel |
author_facet | Shah, Chirag Bosse, Stefan von Hehl, Axel |
author_sort | Shah, Chirag |
collection | PubMed |
description | Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges. |
format | Online Article Text |
id | pubmed-9267621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92676212022-07-09 Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics Shah, Chirag Bosse, Stefan von Hehl, Axel Materials (Basel) Article Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges. MDPI 2022-07-01 /pmc/articles/PMC9267621/ /pubmed/35806767 http://dx.doi.org/10.3390/ma15134645 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shah, Chirag Bosse, Stefan von Hehl, Axel Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
title | Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
title_full | Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
title_fullStr | Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
title_full_unstemmed | Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
title_short | Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
title_sort | taxonomy of damage patterns in composite materials, measuring signals, and methods for automated damage diagnostics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267621/ https://www.ncbi.nlm.nih.gov/pubmed/35806767 http://dx.doi.org/10.3390/ma15134645 |
work_keys_str_mv | AT shahchirag taxonomyofdamagepatternsincompositematerialsmeasuringsignalsandmethodsforautomateddamagediagnostics AT bossestefan taxonomyofdamagepatternsincompositematerialsmeasuringsignalsandmethodsforautomateddamagediagnostics AT vonhehlaxel taxonomyofdamagepatternsincompositematerialsmeasuringsignalsandmethodsforautomateddamagediagnostics |