Cargando…
Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics
Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-mel...
Autores principales: | Quinn, Paul, Uí Mhurchadha, Sinéad M., Lawlor, Jim, Raghavendra, Ramesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267662/ https://www.ncbi.nlm.nih.gov/pubmed/35806831 http://dx.doi.org/10.3390/ma15134707 |
Ejemplares similares
-
Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts
por: Galati, Manuela, et al.
Publicado: (2019) -
Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts
por: Alfieri, Vittorio, et al.
Publicado: (2016) -
316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties
por: Groarke, Robert, et al.
Publicado: (2020) -
Low-Roughness-Surface Additive Manufacturing of Metal-Wire Feeding with Small Power
por: Li, Bobo, et al.
Publicado: (2021) -
Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural Network
por: So, Min Seop, et al.
Publicado: (2022)