Cargando…
Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor
The article presents the process of selecting and optimising artificial neural networks based on the example of determining the stress distribution in a disk-drum structure compressor stage of an aircraft turbine engine. The presented algorithm allows the determination of von Mises stress values whi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267686/ https://www.ncbi.nlm.nih.gov/pubmed/35806579 http://dx.doi.org/10.3390/ma15134451 |
_version_ | 1784743793294049280 |
---|---|
author | Kozakiewicz, Adam Kieszek, Rafał |
author_facet | Kozakiewicz, Adam Kieszek, Rafał |
author_sort | Kozakiewicz, Adam |
collection | PubMed |
description | The article presents the process of selecting and optimising artificial neural networks based on the example of determining the stress distribution in a disk-drum structure compressor stage of an aircraft turbine engine. The presented algorithm allows the determination of von Mises stress values which can be part of the penalty function for further mass optimization of the structure. A method of a parametric model description of a compressor stage is presented in order to prepare a reduced stress distribution for training artificial neural networks. A comparative analysis of selected neural network training algorithms combined with the optimisation of their structure is presented. A genetic algorithm was used to determine the optimal number of hidden layers and neurons in a layer. The objective function was to minimise the absolute value of the relative error and standard deviation of stresses determined by FEM and artificial neural networks. The results are presented in the form of the Pareto front due to the stochastic optimisation process. |
format | Online Article Text |
id | pubmed-9267686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92676862022-07-09 Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor Kozakiewicz, Adam Kieszek, Rafał Materials (Basel) Article The article presents the process of selecting and optimising artificial neural networks based on the example of determining the stress distribution in a disk-drum structure compressor stage of an aircraft turbine engine. The presented algorithm allows the determination of von Mises stress values which can be part of the penalty function for further mass optimization of the structure. A method of a parametric model description of a compressor stage is presented in order to prepare a reduced stress distribution for training artificial neural networks. A comparative analysis of selected neural network training algorithms combined with the optimisation of their structure is presented. A genetic algorithm was used to determine the optimal number of hidden layers and neurons in a layer. The objective function was to minimise the absolute value of the relative error and standard deviation of stresses determined by FEM and artificial neural networks. The results are presented in the form of the Pareto front due to the stochastic optimisation process. MDPI 2022-06-24 /pmc/articles/PMC9267686/ /pubmed/35806579 http://dx.doi.org/10.3390/ma15134451 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kozakiewicz, Adam Kieszek, Rafał Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor |
title | Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor |
title_full | Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor |
title_fullStr | Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor |
title_full_unstemmed | Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor |
title_short | Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor |
title_sort | artificial neural network structure optimisation in the pareto approach on the example of stress prediction in the disk-drum structure of an axial compressor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267686/ https://www.ncbi.nlm.nih.gov/pubmed/35806579 http://dx.doi.org/10.3390/ma15134451 |
work_keys_str_mv | AT kozakiewiczadam artificialneuralnetworkstructureoptimisationintheparetoapproachontheexampleofstresspredictioninthediskdrumstructureofanaxialcompressor AT kieszekrafał artificialneuralnetworkstructureoptimisationintheparetoapproachontheexampleofstresspredictioninthediskdrumstructureofanaxialcompressor |