Cargando…
Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model
The rapidly growing field of tissue engineering hopes to soon address the shortage of transplantable tissues, allowing for precise control and fabrication that could be made for each specific patient. The protocols currently in place to print large-scale tissues have yet to address the main challeng...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267737/ https://www.ncbi.nlm.nih.gov/pubmed/35806588 http://dx.doi.org/10.3390/ma15134468 |
_version_ | 1784743806296391680 |
---|---|
author | Oropeza, Beu P. Serna, Carlos Furth, Michael E. Solis, Luis H. Gonzalez, Cesar E. Altamirano, Valeria Alvarado, Daisy C. Castor, Jesus A. Cedeno, Jesus A. Chaparro Vega, Dante Cordova, Octavio Deaguero, Isaac G. Delgado, Erwin I. Duarte, Mario F. Garcia Gonzalez Favela, Mirsa Marquez, Alba J. Leyva Loera, Emilio S. Lopez, Gisela Lugo, Fernanda Miramontes, Tania G. Munoz, Erik Rodriguez, Paola A. Subia, Leila M. Herrera, Arahim A. Zuniga Boland, Thomas |
author_facet | Oropeza, Beu P. Serna, Carlos Furth, Michael E. Solis, Luis H. Gonzalez, Cesar E. Altamirano, Valeria Alvarado, Daisy C. Castor, Jesus A. Cedeno, Jesus A. Chaparro Vega, Dante Cordova, Octavio Deaguero, Isaac G. Delgado, Erwin I. Duarte, Mario F. Garcia Gonzalez Favela, Mirsa Marquez, Alba J. Leyva Loera, Emilio S. Lopez, Gisela Lugo, Fernanda Miramontes, Tania G. Munoz, Erik Rodriguez, Paola A. Subia, Leila M. Herrera, Arahim A. Zuniga Boland, Thomas |
author_sort | Oropeza, Beu P. |
collection | PubMed |
description | The rapidly growing field of tissue engineering hopes to soon address the shortage of transplantable tissues, allowing for precise control and fabrication that could be made for each specific patient. The protocols currently in place to print large-scale tissues have yet to address the main challenge of nutritional deficiencies in the central areas of the engineered tissue, causing necrosis deep within and rendering it ineffective. Bioprinted microvasculature has been proposed to encourage angiogenesis and facilitate the mobility of oxygen and nutrients throughout the engineered tissue. An implant made via an inkjet printing process containing human microvascular endothelial cells was placed in both B17-SCID and NSG-SGM3 animal models to determine the rate of angiogenesis and degree of cell survival. The implantable tissues were made using a combination of alginate and gelatin type B; all implants were printed via previously published procedures using a modified HP inkjet printer. Histopathological results show a dramatic increase in the average microvasculature formation for mice that received the printed constructs within the implant area when compared to the manual and control implants, indicating inkjet bioprinting technology can be effectively used for vascularization of engineered tissues. |
format | Online Article Text |
id | pubmed-9267737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92677372022-07-09 Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model Oropeza, Beu P. Serna, Carlos Furth, Michael E. Solis, Luis H. Gonzalez, Cesar E. Altamirano, Valeria Alvarado, Daisy C. Castor, Jesus A. Cedeno, Jesus A. Chaparro Vega, Dante Cordova, Octavio Deaguero, Isaac G. Delgado, Erwin I. Duarte, Mario F. Garcia Gonzalez Favela, Mirsa Marquez, Alba J. Leyva Loera, Emilio S. Lopez, Gisela Lugo, Fernanda Miramontes, Tania G. Munoz, Erik Rodriguez, Paola A. Subia, Leila M. Herrera, Arahim A. Zuniga Boland, Thomas Materials (Basel) Article The rapidly growing field of tissue engineering hopes to soon address the shortage of transplantable tissues, allowing for precise control and fabrication that could be made for each specific patient. The protocols currently in place to print large-scale tissues have yet to address the main challenge of nutritional deficiencies in the central areas of the engineered tissue, causing necrosis deep within and rendering it ineffective. Bioprinted microvasculature has been proposed to encourage angiogenesis and facilitate the mobility of oxygen and nutrients throughout the engineered tissue. An implant made via an inkjet printing process containing human microvascular endothelial cells was placed in both B17-SCID and NSG-SGM3 animal models to determine the rate of angiogenesis and degree of cell survival. The implantable tissues were made using a combination of alginate and gelatin type B; all implants were printed via previously published procedures using a modified HP inkjet printer. Histopathological results show a dramatic increase in the average microvasculature formation for mice that received the printed constructs within the implant area when compared to the manual and control implants, indicating inkjet bioprinting technology can be effectively used for vascularization of engineered tissues. MDPI 2022-06-24 /pmc/articles/PMC9267737/ /pubmed/35806588 http://dx.doi.org/10.3390/ma15134468 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oropeza, Beu P. Serna, Carlos Furth, Michael E. Solis, Luis H. Gonzalez, Cesar E. Altamirano, Valeria Alvarado, Daisy C. Castor, Jesus A. Cedeno, Jesus A. Chaparro Vega, Dante Cordova, Octavio Deaguero, Isaac G. Delgado, Erwin I. Duarte, Mario F. Garcia Gonzalez Favela, Mirsa Marquez, Alba J. Leyva Loera, Emilio S. Lopez, Gisela Lugo, Fernanda Miramontes, Tania G. Munoz, Erik Rodriguez, Paola A. Subia, Leila M. Herrera, Arahim A. Zuniga Boland, Thomas Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model |
title | Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model |
title_full | Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model |
title_fullStr | Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model |
title_full_unstemmed | Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model |
title_short | Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model |
title_sort | assessment of angiogenesis and cell survivability of an inkjet bioprinted biological implant in an animal model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267737/ https://www.ncbi.nlm.nih.gov/pubmed/35806588 http://dx.doi.org/10.3390/ma15134468 |
work_keys_str_mv | AT oropezabeup assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT sernacarlos assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT furthmichaele assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT solisluish assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT gonzalezcesare assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT altamiranovaleria assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT alvaradodaisyc assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT castorjesusa assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT cedenojesusa assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT chaparrovegadante assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT cordovaoctavio assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT deagueroisaacg assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT delgadoerwini assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT duartemariofgarcia assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT gonzalezfavelamirsa assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT marquezalbajleyva assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT loeraemilios assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT lopezgisela assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT lugofernanda assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT miramontestaniag assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT munozerik assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT rodriguezpaolaa assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT subialeilam assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT herreraarahimazuniga assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel AT bolandthomas assessmentofangiogenesisandcellsurvivabilityofaninkjetbioprintedbiologicalimplantinananimalmodel |