Cargando…
Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria
The prevalence of cephalosporine-resistant (3GC-R) strains among United States community-related research samples ranged from 5.6 to 10.8%, while, in the European countries, it was 1.2% to 10.1%. Several studies suggest that meat of animal origin could be one of the reservoirs of 3GC-R bacteria. Her...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267975/ https://www.ncbi.nlm.nih.gov/pubmed/35807396 http://dx.doi.org/10.3390/molecules27134151 |
_version_ | 1784743867476606976 |
---|---|
author | Rybak, Bartosz Potrykus, Marta Plenis, Alina Wolska, Lidia |
author_facet | Rybak, Bartosz Potrykus, Marta Plenis, Alina Wolska, Lidia |
author_sort | Rybak, Bartosz |
collection | PubMed |
description | The prevalence of cephalosporine-resistant (3GC-R) strains among United States community-related research samples ranged from 5.6 to 10.8%, while, in the European countries, it was 1.2% to 10.1%. Several studies suggest that meat of animal origin could be one of the reservoirs of 3GC-R bacteria. Here, 86 raw meat samples (turkey, pork, chicken and beef) were collected randomly and verified for the presence of 3GC-R bacteria. The 3GC-R bacteria were isolated, identified and characterized phenotypically (antibiotic resistance, motility and biofilm) and genotypically (repetitive-sequence-based rep-PCR) to elucidate any correlations with principal component analysis (PCA). From 28 3GC-R positive samples, 41 strains were isolated, from which the majority belonged to Serratia fonticola (39%), followed by Escherichia coli (19.5%), Enterobacter cloacae (17.1%) and Klebsiella pneumoniae (14.6%). The isolates of E. coli and S. fonticola presented diverse profiles in rep-PCR. Generally, 3GC-R strains were more resistant to antibiotics used in veterinary medicine than in human medicine. PCA derived from antibiotic resistance, motility and biofilm formation of S. fonticola and E. coli strains showed that resistance to beta-lactams was separated from the resistance to other antibiotic classes. Moreover, for the S. fonticola, E. coli and En. cloacae, the type of meat can create a specific tendency towards antibiotic resistance and phenotypic characteristics for S. fonticola, while these relationships were not found for other tested species. |
format | Online Article Text |
id | pubmed-9267975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92679752022-07-09 Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria Rybak, Bartosz Potrykus, Marta Plenis, Alina Wolska, Lidia Molecules Article The prevalence of cephalosporine-resistant (3GC-R) strains among United States community-related research samples ranged from 5.6 to 10.8%, while, in the European countries, it was 1.2% to 10.1%. Several studies suggest that meat of animal origin could be one of the reservoirs of 3GC-R bacteria. Here, 86 raw meat samples (turkey, pork, chicken and beef) were collected randomly and verified for the presence of 3GC-R bacteria. The 3GC-R bacteria were isolated, identified and characterized phenotypically (antibiotic resistance, motility and biofilm) and genotypically (repetitive-sequence-based rep-PCR) to elucidate any correlations with principal component analysis (PCA). From 28 3GC-R positive samples, 41 strains were isolated, from which the majority belonged to Serratia fonticola (39%), followed by Escherichia coli (19.5%), Enterobacter cloacae (17.1%) and Klebsiella pneumoniae (14.6%). The isolates of E. coli and S. fonticola presented diverse profiles in rep-PCR. Generally, 3GC-R strains were more resistant to antibiotics used in veterinary medicine than in human medicine. PCA derived from antibiotic resistance, motility and biofilm formation of S. fonticola and E. coli strains showed that resistance to beta-lactams was separated from the resistance to other antibiotic classes. Moreover, for the S. fonticola, E. coli and En. cloacae, the type of meat can create a specific tendency towards antibiotic resistance and phenotypic characteristics for S. fonticola, while these relationships were not found for other tested species. MDPI 2022-06-28 /pmc/articles/PMC9267975/ /pubmed/35807396 http://dx.doi.org/10.3390/molecules27134151 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rybak, Bartosz Potrykus, Marta Plenis, Alina Wolska, Lidia Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria |
title | Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria |
title_full | Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria |
title_fullStr | Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria |
title_full_unstemmed | Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria |
title_short | Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria |
title_sort | raw meat contaminated with cephalosporin-resistant enterobacterales as a potential source of human home exposure to multidrug-resistant bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267975/ https://www.ncbi.nlm.nih.gov/pubmed/35807396 http://dx.doi.org/10.3390/molecules27134151 |
work_keys_str_mv | AT rybakbartosz rawmeatcontaminatedwithcephalosporinresistantenterobacteralesasapotentialsourceofhumanhomeexposuretomultidrugresistantbacteria AT potrykusmarta rawmeatcontaminatedwithcephalosporinresistantenterobacteralesasapotentialsourceofhumanhomeexposuretomultidrugresistantbacteria AT plenisalina rawmeatcontaminatedwithcephalosporinresistantenterobacteralesasapotentialsourceofhumanhomeexposuretomultidrugresistantbacteria AT wolskalidia rawmeatcontaminatedwithcephalosporinresistantenterobacteralesasapotentialsourceofhumanhomeexposuretomultidrugresistantbacteria |