Cargando…
Designed Mini Protein 20 Mimicking Uricase Encapsulated in ZIF-8 as Nanozyme Biosensor for Uric Acid Detection
This work presents the use of encapsulated mini protein 20 mimicking uricase (mp20)-zeolitic imidazolate framework-8 (ZIF-8) as a bioreceptor for the development of a nanozyme-based electrochemical biosensor for uric acid detection. The electrochemical performance of the biofunctionalized mp20@ZIF-8...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267977/ https://www.ncbi.nlm.nih.gov/pubmed/35808126 http://dx.doi.org/10.3390/nano12132290 |
Sumario: | This work presents the use of encapsulated mini protein 20 mimicking uricase (mp20)-zeolitic imidazolate framework-8 (ZIF-8) as a bioreceptor for the development of a nanozyme-based electrochemical biosensor for uric acid detection. The electrochemical performance of the biofunctionalized mp20@ZIF-8 on the reduced graphene oxide/screen-printed carbon electrode (rGO/SPCE) was investigated by optimizing operating parameters such as pH, deposition potential, and deposition time using a central composite design-response surface methodology (CCD-RSM). The quadratic regression model was developed to correlate the combination of each variable to the oxidation current density as a response. A significant effect on current response was observed under optimized conditions of pH of 7.4 at −0.35 V deposition potential and 56.56 s deposition time, with p < 0.05 for each interacted factor. The obtained coefficient of determination (R(2)) value of 0.9992 indicated good agreement with the experimental finding. The developed nanozyme biosensor (mp20@ZIF-8/rGO/SPCE) exhibited high selectivity in the presence of the same fold concentration of interfering species with a detection limit of 0.27 μM, over a concentration range of 1 to 34 μM. The practicality of the tailored biosensor in monitoring uric acid in human serum and urine samples was validated with high-performance liquid chromatography (HPLC) and a commercial uric acid meter. Hence, nanozyme-based is a promising platform that offers a rapid, sensitive, selective, and low-cost biosensor for the non-enzymatic detection of uric acid in biological samples. |
---|