Cargando…
Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact
(1) Teeth, in humans, represent the most resilient tissues. However, exposure to concentrated acids might lead to their dissolving, thus making human identification difficult. Teeth often contain dental restorations from materials that are even more resilient to acid impact. This paper aims to intro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268125/ https://www.ncbi.nlm.nih.gov/pubmed/35807281 http://dx.doi.org/10.3390/molecules27134035 |
_version_ | 1784743899938422784 |
---|---|
author | Thurzo, Andrej Jančovičová, Viera Hain, Miroslav Thurzo, Milan Novák, Bohuslav Kosnáčová, Helena Lehotská, Viera Varga, Ivan Kováč, Peter Moravanský, Norbert |
author_facet | Thurzo, Andrej Jančovičová, Viera Hain, Miroslav Thurzo, Milan Novák, Bohuslav Kosnáčová, Helena Lehotská, Viera Varga, Ivan Kováč, Peter Moravanský, Norbert |
author_sort | Thurzo, Andrej |
collection | PubMed |
description | (1) Teeth, in humans, represent the most resilient tissues. However, exposure to concentrated acids might lead to their dissolving, thus making human identification difficult. Teeth often contain dental restorations from materials that are even more resilient to acid impact. This paper aims to introduce a novel method for the 3D reconstruction of dental patterns as a crucial step for the digital identification of dental records. (2) With a combination of modern methods, including micro-computed tomography, cone-beam computer tomography, and attenuated total reflection, in conjunction with Fourier transform infrared spectroscopy and artificial intelligence convolutional neural network algorithms, this paper presents a method for 3D-dental-pattern reconstruction, and human remains identification. Our research studies the morphology of teeth, bone, and dental materials (amalgam, composite, glass-ionomer cement) under different periods of exposure to 75% sulfuric acid. (3) Our results reveal a significant volume loss in bone, enamel, dentine, as well as glass-ionomer cement. The results also reveal a significant resistance by the composite and amalgam dental materials to the impact of sulfuric acid, thus serving as strong parts in the dental-pattern mosaic. This paper also probably introduces the first successful artificial intelligence application in automated-forensic-CBCT segmentation. (4) Interdisciplinary cooperation, utilizing the mentioned technologies, can solve the problem of human remains identification with a 3D reconstruction of dental patterns and their 2D projections over existing ante-mortem records. |
format | Online Article Text |
id | pubmed-9268125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92681252022-07-09 Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact Thurzo, Andrej Jančovičová, Viera Hain, Miroslav Thurzo, Milan Novák, Bohuslav Kosnáčová, Helena Lehotská, Viera Varga, Ivan Kováč, Peter Moravanský, Norbert Molecules Article (1) Teeth, in humans, represent the most resilient tissues. However, exposure to concentrated acids might lead to their dissolving, thus making human identification difficult. Teeth often contain dental restorations from materials that are even more resilient to acid impact. This paper aims to introduce a novel method for the 3D reconstruction of dental patterns as a crucial step for the digital identification of dental records. (2) With a combination of modern methods, including micro-computed tomography, cone-beam computer tomography, and attenuated total reflection, in conjunction with Fourier transform infrared spectroscopy and artificial intelligence convolutional neural network algorithms, this paper presents a method for 3D-dental-pattern reconstruction, and human remains identification. Our research studies the morphology of teeth, bone, and dental materials (amalgam, composite, glass-ionomer cement) under different periods of exposure to 75% sulfuric acid. (3) Our results reveal a significant volume loss in bone, enamel, dentine, as well as glass-ionomer cement. The results also reveal a significant resistance by the composite and amalgam dental materials to the impact of sulfuric acid, thus serving as strong parts in the dental-pattern mosaic. This paper also probably introduces the first successful artificial intelligence application in automated-forensic-CBCT segmentation. (4) Interdisciplinary cooperation, utilizing the mentioned technologies, can solve the problem of human remains identification with a 3D reconstruction of dental patterns and their 2D projections over existing ante-mortem records. MDPI 2022-06-23 /pmc/articles/PMC9268125/ /pubmed/35807281 http://dx.doi.org/10.3390/molecules27134035 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Thurzo, Andrej Jančovičová, Viera Hain, Miroslav Thurzo, Milan Novák, Bohuslav Kosnáčová, Helena Lehotská, Viera Varga, Ivan Kováč, Peter Moravanský, Norbert Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact |
title | Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact |
title_full | Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact |
title_fullStr | Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact |
title_full_unstemmed | Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact |
title_short | Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact |
title_sort | human remains identification using micro-ct, chemometric and ai methods in forensic experimental reconstruction of dental patterns after concentrated sulphuric acid significant impact |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268125/ https://www.ncbi.nlm.nih.gov/pubmed/35807281 http://dx.doi.org/10.3390/molecules27134035 |
work_keys_str_mv | AT thurzoandrej humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT jancovicovaviera humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT hainmiroslav humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT thurzomilan humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT novakbohuslav humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT kosnacovahelena humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT lehotskaviera humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT vargaivan humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT kovacpeter humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact AT moravanskynorbert humanremainsidentificationusingmicroctchemometricandaimethodsinforensicexperimentalreconstructionofdentalpatternsafterconcentratedsulphuricacidsignificantimpact |