Cargando…

Elevation of Serum Spermidine in Obese Patients: Results from a Cross-Sectional and Follow-Up Study

Background: Spermidine, a natural polyamine, appears to be a promising intervention for the treatment of obesity in animal studies, but epidemiological studies on the association between spermidine and obesity are inadequate. Methods: In the cross-sectional study, a total of 4230 eligible Chinese ru...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Hanshu, Zhang, Qianlong, Xu, Jiahui, Yuan, Wei, Li, Ruixue, Guo, Hui, Gu, Cuiying, Feng, Wenjing, Ma, Yanan, Sun, Zhaoqing, Zheng, Liqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268142/
https://www.ncbi.nlm.nih.gov/pubmed/35807793
http://dx.doi.org/10.3390/nu14132613
Descripción
Sumario:Background: Spermidine, a natural polyamine, appears to be a promising intervention for the treatment of obesity in animal studies, but epidemiological studies on the association between spermidine and obesity are inadequate. Methods: In the cross-sectional study, a total of 4230 eligible Chinese rural participants aged ≥ 35 years at baseline were recruited, of whom 1738 completed the two-year follow-up. Serum spermidines were measured using high-performance liquid chromatography with a fluorescence detector. Obesity and change in BMI were used as outcomes. Multivariable logistic regression analysis was applied to obtain the odds ratios (ORs) and 95% confidence intervals (CIs). Results: Participants who were obese had higher serum spermidine concentrations than those who were of normal weight (median (IQR), 27.2 ng/mL (14.8–53.4 ng/mL) vs. 23.8 ng/mL (12.8–46.6 ng/mL), p = 0.002). Compared with participants in the first quartile, those in the third quartile (OR 1.327, 95% CI 1.050 to 1.678) and the fourth quartile (OR 1.417, 95% CI 1.121 to 1.791) had a significantly increased risk of prevalent obesity after adjustment for confounding factors. In the follow-up study, participants in the third quartile (OR 0.712, 95% CI 0.535 to 0.946) and the fourth quartile (OR 0.493, 95% CI 0.370 to 0.657) had significantly lower risks of an increase in BMI after adjustment for confounding factors, with the lowest quartile as the reference. Meanwhile, we found a nonlinear relationship between spermidine and BMI in the follow-up study (p < 0.001). Conclusions: Serum spermidine was positively associated with increased odds of obesity in the cross-sectional study but reduced odds of an increase in BMI in the follow-up study among Chinese adults. Future studies are warranted to determine the exact mechanism underlying the association between spermidine and obesity and the scope for interventions.