Cargando…
Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries
This study evaluated the effect of pitch coating on graphite anode materials used in lithium-ion batteries and investigated the mechanism whereby pitch coating improves the electrochemical properties. The FG (flake graphite) and pitch were mixed in weight ratios of 95:5–80:20. The mixture was presse...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268190/ https://www.ncbi.nlm.nih.gov/pubmed/35806837 http://dx.doi.org/10.3390/ma15134713 |
_version_ | 1784743916166184960 |
---|---|
author | Kim, Bo-Ra Kim, Ji-Hong Im, Ji-Sun |
author_facet | Kim, Bo-Ra Kim, Ji-Hong Im, Ji-Sun |
author_sort | Kim, Bo-Ra |
collection | PubMed |
description | This study evaluated the effect of pitch coating on graphite anode materials used in lithium-ion batteries and investigated the mechanism whereby pitch coating improves the electrochemical properties. The FG (flake graphite) and pitch were mixed in weight ratios of 95:5–80:20. The mixture was pressed and prepared into a block form. Additionally, heat treatment was performed at 900 °C for 1 h and pulverized in the size range of 10–25 μm. The results showed that the particles of uniform pitch-coated graphite became more spherical. However, when the pitch is added excessively, pitch aggregation occurs rather than a thicker coating, indicating a nonuniform particle shape. Pitch has a randomly oriented structure and a small crystal size. Therefore, pitch serves as a lithium-ion diffusion pathway, resulting in an improved rate of performance. Notably, the uniform pitch-coated graphite exhibited an outstanding rate of performance owing to the relieving of particle orientation in the electrode rolling process. During the rolling process, the particles are oriented perpendicular to the lithium-ion diffusion pathway, making it difficult for the lithium ions to diffuse. Adding an excessive amount of pitch was found to deteriorate the rate of performance. Pitch aggregation increased the interfacial resistance by forming a heterogeneous surface. |
format | Online Article Text |
id | pubmed-9268190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92681902022-07-09 Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries Kim, Bo-Ra Kim, Ji-Hong Im, Ji-Sun Materials (Basel) Article This study evaluated the effect of pitch coating on graphite anode materials used in lithium-ion batteries and investigated the mechanism whereby pitch coating improves the electrochemical properties. The FG (flake graphite) and pitch were mixed in weight ratios of 95:5–80:20. The mixture was pressed and prepared into a block form. Additionally, heat treatment was performed at 900 °C for 1 h and pulverized in the size range of 10–25 μm. The results showed that the particles of uniform pitch-coated graphite became more spherical. However, when the pitch is added excessively, pitch aggregation occurs rather than a thicker coating, indicating a nonuniform particle shape. Pitch has a randomly oriented structure and a small crystal size. Therefore, pitch serves as a lithium-ion diffusion pathway, resulting in an improved rate of performance. Notably, the uniform pitch-coated graphite exhibited an outstanding rate of performance owing to the relieving of particle orientation in the electrode rolling process. During the rolling process, the particles are oriented perpendicular to the lithium-ion diffusion pathway, making it difficult for the lithium ions to diffuse. Adding an excessive amount of pitch was found to deteriorate the rate of performance. Pitch aggregation increased the interfacial resistance by forming a heterogeneous surface. MDPI 2022-07-05 /pmc/articles/PMC9268190/ /pubmed/35806837 http://dx.doi.org/10.3390/ma15134713 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Bo-Ra Kim, Ji-Hong Im, Ji-Sun Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries |
title | Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries |
title_full | Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries |
title_fullStr | Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries |
title_full_unstemmed | Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries |
title_short | Effect and Mechanism of Pitch Coating on the Rate Performance Improvement of Lithium-Ion Batteries |
title_sort | effect and mechanism of pitch coating on the rate performance improvement of lithium-ion batteries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268190/ https://www.ncbi.nlm.nih.gov/pubmed/35806837 http://dx.doi.org/10.3390/ma15134713 |
work_keys_str_mv | AT kimbora effectandmechanismofpitchcoatingontherateperformanceimprovementoflithiumionbatteries AT kimjihong effectandmechanismofpitchcoatingontherateperformanceimprovementoflithiumionbatteries AT imjisun effectandmechanismofpitchcoatingontherateperformanceimprovementoflithiumionbatteries |