Cargando…

Electrochemically Promoted Benzylation of [60]Fullerooxazolidinone

Benzylation of the electrochemically generated dianion from N-p-tolyl-[60]fullerooxazolidinone with benzyl bromide provides three products with different addition patterns. The product distribution can be dramatically altered by varying the reaction conditions. Based on spectral characterizations, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Xing-Xing, Niu, Chuang, Ye, Shi-Qi, Zhao, Bo-Chen, Wang, Guan-Wu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268232/
https://www.ncbi.nlm.nih.gov/pubmed/35808117
http://dx.doi.org/10.3390/nano12132281
Descripción
Sumario:Benzylation of the electrochemically generated dianion from N-p-tolyl-[60]fullerooxazolidinone with benzyl bromide provides three products with different addition patterns. The product distribution can be dramatically altered by varying the reaction conditions. Based on spectral characterizations, these products have been assigned as mono-benzylated 1,4-adduct and bis-benzylated 1,2,3,16- and 1,4,9,25-adducts, respectively. The assigned 1,2,3,16-adduct has been further established by X-ray diffraction analysis. It is believed that the 1,4-adduct is obtained by decarboxylative benzylation of the dianionic species, while bis-benzylated 1,2,3,16- and 1,4,9,25-adducts are achieved via a rearrangement process. In addition, the electrochemical properties of these products have been studied.