Cargando…
Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and met...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268307/ https://www.ncbi.nlm.nih.gov/pubmed/35807553 http://dx.doi.org/10.3390/molecules27134308 |
_version_ | 1784743946147069952 |
---|---|
author | Fu, Junfeng Wang, Yaping Sun, Meng Xu, Yingwei Chen, Lanming |
author_facet | Fu, Junfeng Wang, Yaping Sun, Meng Xu, Yingwei Chen, Lanming |
author_sort | Fu, Junfeng |
collection | PubMed |
description | The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria. |
format | Online Article Text |
id | pubmed-9268307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92683072022-07-09 Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance Fu, Junfeng Wang, Yaping Sun, Meng Xu, Yingwei Chen, Lanming Molecules Article The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria. MDPI 2022-07-05 /pmc/articles/PMC9268307/ /pubmed/35807553 http://dx.doi.org/10.3390/molecules27134308 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fu, Junfeng Wang, Yaping Sun, Meng Xu, Yingwei Chen, Lanming Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance |
title | Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance |
title_full | Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance |
title_fullStr | Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance |
title_full_unstemmed | Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance |
title_short | Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance |
title_sort | antibacterial activity and components of the methanol-phase extract from rhizomes of pharmacophagous plant alpinia officinarum hance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268307/ https://www.ncbi.nlm.nih.gov/pubmed/35807553 http://dx.doi.org/10.3390/molecules27134308 |
work_keys_str_mv | AT fujunfeng antibacterialactivityandcomponentsofthemethanolphaseextractfromrhizomesofpharmacophagousplantalpiniaofficinarumhance AT wangyaping antibacterialactivityandcomponentsofthemethanolphaseextractfromrhizomesofpharmacophagousplantalpiniaofficinarumhance AT sunmeng antibacterialactivityandcomponentsofthemethanolphaseextractfromrhizomesofpharmacophagousplantalpiniaofficinarumhance AT xuyingwei antibacterialactivityandcomponentsofthemethanolphaseextractfromrhizomesofpharmacophagousplantalpiniaofficinarumhance AT chenlanming antibacterialactivityandcomponentsofthemethanolphaseextractfromrhizomesofpharmacophagousplantalpiniaofficinarumhance |