Cargando…
Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation
The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268343/ https://www.ncbi.nlm.nih.gov/pubmed/35806844 http://dx.doi.org/10.3390/ma15134718 |
_version_ | 1784743956368588800 |
---|---|
author | Alanis-Gómez, Ricardo Pascual Rivera-Muñoz, Eric Mauricio Luna-Barcenas, Gabriel Alanis-Gómez, José Rafael Velázquez-Castillo, Rodrigo |
author_facet | Alanis-Gómez, Ricardo Pascual Rivera-Muñoz, Eric Mauricio Luna-Barcenas, Gabriel Alanis-Gómez, José Rafael Velázquez-Castillo, Rodrigo |
author_sort | Alanis-Gómez, Ricardo Pascual |
collection | PubMed |
description | The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hydrothermal method. Glutamic acid was used to control the HAp crystal growth; thereby, nanofibers were obtained with a preferential crystalline orientation, and they were grown along the “c” axis of HAp crystal structures. This morphology exposed the (300) and (100) crystal planes on the surface, and several phosphate groups and calcium ions were also exposed; they were able to form numerous chemical interactions with the amine, hydroxyl, and carbonyl groups of chitosan. Consequently, the final mechanical resistance of the composite materials was synergistically increased. Nanofibers were mixed with commercial chitosan using a sonotrode to improve their dispersion within the biopolymer matrix and prevent migration. The HAp nanofiber/Chitosan composite materials showed higher mechanical resistance than that observed in similar materials with the same chemical composition that were made of commercial HAp powders, which were used as reference materials. The mechanical resistance under tension of the composite materials made of nanofibers was similar to that reported for cortical bone. |
format | Online Article Text |
id | pubmed-9268343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92683432022-07-09 Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation Alanis-Gómez, Ricardo Pascual Rivera-Muñoz, Eric Mauricio Luna-Barcenas, Gabriel Alanis-Gómez, José Rafael Velázquez-Castillo, Rodrigo Materials (Basel) Article The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hydrothermal method. Glutamic acid was used to control the HAp crystal growth; thereby, nanofibers were obtained with a preferential crystalline orientation, and they were grown along the “c” axis of HAp crystal structures. This morphology exposed the (300) and (100) crystal planes on the surface, and several phosphate groups and calcium ions were also exposed; they were able to form numerous chemical interactions with the amine, hydroxyl, and carbonyl groups of chitosan. Consequently, the final mechanical resistance of the composite materials was synergistically increased. Nanofibers were mixed with commercial chitosan using a sonotrode to improve their dispersion within the biopolymer matrix and prevent migration. The HAp nanofiber/Chitosan composite materials showed higher mechanical resistance than that observed in similar materials with the same chemical composition that were made of commercial HAp powders, which were used as reference materials. The mechanical resistance under tension of the composite materials made of nanofibers was similar to that reported for cortical bone. MDPI 2022-07-05 /pmc/articles/PMC9268343/ /pubmed/35806844 http://dx.doi.org/10.3390/ma15134718 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alanis-Gómez, Ricardo Pascual Rivera-Muñoz, Eric Mauricio Luna-Barcenas, Gabriel Alanis-Gómez, José Rafael Velázquez-Castillo, Rodrigo Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation |
title | Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation |
title_full | Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation |
title_fullStr | Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation |
title_full_unstemmed | Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation |
title_short | Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation |
title_sort | improving the mechanical resistance of hydroxyapatite/chitosan composite materials made of nanofibers with crystalline preferential orientation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268343/ https://www.ncbi.nlm.nih.gov/pubmed/35806844 http://dx.doi.org/10.3390/ma15134718 |
work_keys_str_mv | AT alanisgomezricardopascual improvingthemechanicalresistanceofhydroxyapatitechitosancompositematerialsmadeofnanofiberswithcrystallinepreferentialorientation AT riveramunozericmauricio improvingthemechanicalresistanceofhydroxyapatitechitosancompositematerialsmadeofnanofiberswithcrystallinepreferentialorientation AT lunabarcenasgabriel improvingthemechanicalresistanceofhydroxyapatitechitosancompositematerialsmadeofnanofiberswithcrystallinepreferentialorientation AT alanisgomezjoserafael improvingthemechanicalresistanceofhydroxyapatitechitosancompositematerialsmadeofnanofiberswithcrystallinepreferentialorientation AT velazquezcastillorodrigo improvingthemechanicalresistanceofhydroxyapatitechitosancompositematerialsmadeofnanofiberswithcrystallinepreferentialorientation |