Cargando…

Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates

PURPOSE: The most frequently used model for simulating multireader multicase (MRMC) data that emulates confidence-of-disease ratings from diagnostic imaging studies has been the Roe and Metz (RM) model, proposed by Roe and Metz in 1997 and later generalized by Hillis (2012), Abbey et al. (2013), and...

Descripción completa

Detalles Bibliográficos
Autores principales: Hillis, Stephen L., Smith, Brian J., Chen, Weijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268356/
https://www.ncbi.nlm.nih.gov/pubmed/35818569
http://dx.doi.org/10.1117/1.JMI.9.4.045501
_version_ 1784743959953670144
author Hillis, Stephen L.
Smith, Brian J.
Chen, Weijie
author_facet Hillis, Stephen L.
Smith, Brian J.
Chen, Weijie
author_sort Hillis, Stephen L.
collection PubMed
description PURPOSE: The most frequently used model for simulating multireader multicase (MRMC) data that emulates confidence-of-disease ratings from diagnostic imaging studies has been the Roe and Metz (RM) model, proposed by Roe and Metz in 1997 and later generalized by Hillis (2012), Abbey et al. (2013), and Gallas and Hillis (2014). A problem with these models is that it has been difficult to set model parameters such that the simulated data are similar to MRMC data encountered in practice. To remedy this situation, Hillis (2018) mapped parameters from the RM model to Obuchowski–Rockette (OR) model parameters that describe the distribution of the empirical AUC outcomes computed from the RM model simulated data. We continue that work by providing the reverse mapping, i.e., by deriving an algorithm that expresses RM parameters as functions of the OR empirical AUC distribution parameters. APPROACH: We solve for the corresponding RM parameters in terms of the OR parameters using numerical methods. RESULTS: An algorithm is developed that results in, at most, one solution of RM parameter values that correspond to inputted OR parameter values. The algorithm can be implemented using an R software function. Examples are provided that illustrate the use of the algorithm. A simulation study validates the algorithm. CONCLUSIONS: The resulting algorithm makes it possible to easily determine RM model parameter values such that simulated data emulate a specific real-data study. Thus, MRMC analysis methods can be empirically tested using simulated data similar to that encountered in practice.
format Online
Article
Text
id pubmed-9268356
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Society of Photo-Optical Instrumentation Engineers
record_format MEDLINE/PubMed
spelling pubmed-92683562023-07-08 Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates Hillis, Stephen L. Smith, Brian J. Chen, Weijie J Med Imaging (Bellingham) Image Perception, Observer Performance, and Technology Assessment PURPOSE: The most frequently used model for simulating multireader multicase (MRMC) data that emulates confidence-of-disease ratings from diagnostic imaging studies has been the Roe and Metz (RM) model, proposed by Roe and Metz in 1997 and later generalized by Hillis (2012), Abbey et al. (2013), and Gallas and Hillis (2014). A problem with these models is that it has been difficult to set model parameters such that the simulated data are similar to MRMC data encountered in practice. To remedy this situation, Hillis (2018) mapped parameters from the RM model to Obuchowski–Rockette (OR) model parameters that describe the distribution of the empirical AUC outcomes computed from the RM model simulated data. We continue that work by providing the reverse mapping, i.e., by deriving an algorithm that expresses RM parameters as functions of the OR empirical AUC distribution parameters. APPROACH: We solve for the corresponding RM parameters in terms of the OR parameters using numerical methods. RESULTS: An algorithm is developed that results in, at most, one solution of RM parameter values that correspond to inputted OR parameter values. The algorithm can be implemented using an R software function. Examples are provided that illustrate the use of the algorithm. A simulation study validates the algorithm. CONCLUSIONS: The resulting algorithm makes it possible to easily determine RM model parameter values such that simulated data emulate a specific real-data study. Thus, MRMC analysis methods can be empirically tested using simulated data similar to that encountered in practice. Society of Photo-Optical Instrumentation Engineers 2022-07-08 2022-07 /pmc/articles/PMC9268356/ /pubmed/35818569 http://dx.doi.org/10.1117/1.JMI.9.4.045501 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
spellingShingle Image Perception, Observer Performance, and Technology Assessment
Hillis, Stephen L.
Smith, Brian J.
Chen, Weijie
Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates
title Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates
title_full Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates
title_fullStr Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates
title_full_unstemmed Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates
title_short Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured Obuchowski–Rockette parameter estimates
title_sort determining roe and metz model parameters for simulating multireader multicase confidence-of-disease rating data based on real-data or conjectured obuchowski–rockette parameter estimates
topic Image Perception, Observer Performance, and Technology Assessment
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268356/
https://www.ncbi.nlm.nih.gov/pubmed/35818569
http://dx.doi.org/10.1117/1.JMI.9.4.045501
work_keys_str_mv AT hillisstephenl determiningroeandmetzmodelparametersforsimulatingmultireadermulticaseconfidenceofdiseaseratingdatabasedonrealdataorconjecturedobuchowskirocketteparameterestimates
AT smithbrianj determiningroeandmetzmodelparametersforsimulatingmultireadermulticaseconfidenceofdiseaseratingdatabasedonrealdataorconjecturedobuchowskirocketteparameterestimates
AT chenweijie determiningroeandmetzmodelparametersforsimulatingmultireadermulticaseconfidenceofdiseaseratingdatabasedonrealdataorconjecturedobuchowskirocketteparameterestimates