Cargando…
Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia
Unconsolidated earthen surface materials can retain heavy metals originating from different sources. These metals are dangerous to humans as well as the immediate environment. This danger leads to the need to assess various geochemical conditions of the materials. In this study, the assessment of to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268374/ https://www.ncbi.nlm.nih.gov/pubmed/35807465 http://dx.doi.org/10.3390/molecules27134220 |
_version_ | 1784743965499588608 |
---|---|
author | Yassin, Mohamed A. Tawabini, Bassam Al-Shaibani, Abdulaziz Adetoro, John Adedapo Benaafi, Mohammed AL-Areeq, Ahmed M. Usman, A. G. Abba, S. I. |
author_facet | Yassin, Mohamed A. Tawabini, Bassam Al-Shaibani, Abdulaziz Adetoro, John Adedapo Benaafi, Mohammed AL-Areeq, Ahmed M. Usman, A. G. Abba, S. I. |
author_sort | Yassin, Mohamed A. |
collection | PubMed |
description | Unconsolidated earthen surface materials can retain heavy metals originating from different sources. These metals are dangerous to humans as well as the immediate environment. This danger leads to the need to assess various geochemical conditions of the materials. In this study, the assessment of topsoil materials’ contamination with heavy metals (HMs) was conducted. The material’s representative spatial samples were taken from various sources: agricultural, industrial, and residential areas. The materials include topsoil, eolian deposits, and other unconsolidated earthen materials. The samples were analyzed using the ICP-OES. The obtained results based on the experimental procedure indicated that the average levels of the heavy metals were: As (1.21 ± 0.69 mg/kg), Ba (110.62 ± 262 mg/kg), Hg (0.08 ± 0.18 mg/kg), Pb (6.34 ± 14.55 mg/kg), Ni (8.95 ± 5.66 mg/kg), V (9.98 ± 6.08 mg/kg), Cd (1.18 ± 4.33 mg/kg), Cr (31.79 ± 37.9 mg/kg), Cu (6.76 ± 12.54 mg/kg), and Zn (23.44 ± 84.43 mg/kg). Subsequently, chemometrics modeling and a prediction of Cr concentration (mg/kg) were performed using three different modeling techniques, including two artificial intelligence (AI) techniques, namely, generalized neural network (GRNN) and Elman neural network (Elm NN) models, as well as a classical multivariate statistical technique (MST). The results indicated that the AI-based models have a superior ability in estimating the Cr concentration (mg/kg) than MST, whereby GRNN can enhance the performance of MST up to 94.6% in the validation step. The concentration levels of most metals were found to be within the acceptable range. The findings indicate that AI-based models are cost-effective and efficient tools for trace metal estimations from soil. |
format | Online Article Text |
id | pubmed-9268374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92683742022-07-09 Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia Yassin, Mohamed A. Tawabini, Bassam Al-Shaibani, Abdulaziz Adetoro, John Adedapo Benaafi, Mohammed AL-Areeq, Ahmed M. Usman, A. G. Abba, S. I. Molecules Article Unconsolidated earthen surface materials can retain heavy metals originating from different sources. These metals are dangerous to humans as well as the immediate environment. This danger leads to the need to assess various geochemical conditions of the materials. In this study, the assessment of topsoil materials’ contamination with heavy metals (HMs) was conducted. The material’s representative spatial samples were taken from various sources: agricultural, industrial, and residential areas. The materials include topsoil, eolian deposits, and other unconsolidated earthen materials. The samples were analyzed using the ICP-OES. The obtained results based on the experimental procedure indicated that the average levels of the heavy metals were: As (1.21 ± 0.69 mg/kg), Ba (110.62 ± 262 mg/kg), Hg (0.08 ± 0.18 mg/kg), Pb (6.34 ± 14.55 mg/kg), Ni (8.95 ± 5.66 mg/kg), V (9.98 ± 6.08 mg/kg), Cd (1.18 ± 4.33 mg/kg), Cr (31.79 ± 37.9 mg/kg), Cu (6.76 ± 12.54 mg/kg), and Zn (23.44 ± 84.43 mg/kg). Subsequently, chemometrics modeling and a prediction of Cr concentration (mg/kg) were performed using three different modeling techniques, including two artificial intelligence (AI) techniques, namely, generalized neural network (GRNN) and Elman neural network (Elm NN) models, as well as a classical multivariate statistical technique (MST). The results indicated that the AI-based models have a superior ability in estimating the Cr concentration (mg/kg) than MST, whereby GRNN can enhance the performance of MST up to 94.6% in the validation step. The concentration levels of most metals were found to be within the acceptable range. The findings indicate that AI-based models are cost-effective and efficient tools for trace metal estimations from soil. MDPI 2022-06-30 /pmc/articles/PMC9268374/ /pubmed/35807465 http://dx.doi.org/10.3390/molecules27134220 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yassin, Mohamed A. Tawabini, Bassam Al-Shaibani, Abdulaziz Adetoro, John Adedapo Benaafi, Mohammed AL-Areeq, Ahmed M. Usman, A. G. Abba, S. I. Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia |
title | Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia |
title_full | Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia |
title_fullStr | Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia |
title_full_unstemmed | Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia |
title_short | Geochemical and Spatial Distribution of Topsoil HMs Coupled with Modeling of Cr Using Chemometrics Intelligent Techniques: Case Study from Dammam Area, Saudi Arabia |
title_sort | geochemical and spatial distribution of topsoil hms coupled with modeling of cr using chemometrics intelligent techniques: case study from dammam area, saudi arabia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268374/ https://www.ncbi.nlm.nih.gov/pubmed/35807465 http://dx.doi.org/10.3390/molecules27134220 |
work_keys_str_mv | AT yassinmohameda geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT tawabinibassam geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT alshaibaniabdulaziz geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT adetorojohnadedapo geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT benaafimohammed geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT alareeqahmedm geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT usmanag geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia AT abbasi geochemicalandspatialdistributionoftopsoilhmscoupledwithmodelingofcrusingchemometricsintelligenttechniquescasestudyfromdammamareasaudiarabia |