Cargando…
Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for “Turn-Off–On” High-Sensitivity Detection of Fe(3+) and L-Cysteine
This study designed a “turn-off–on” fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent opti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268387/ https://www.ncbi.nlm.nih.gov/pubmed/35807347 http://dx.doi.org/10.3390/molecules27134099 |
Sumario: | This study designed a “turn-off–on” fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent “turn-off” probes to detect Fe(3+) with a limit of detection of 0.086 µM, a linear detection range of 0.1–160 µM, and recovery of 83.47–106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4–85 µM. Recovery of L-Cys in amino acid beverage was 87.08–122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe(3+) and L-Cys. |
---|