Cargando…

Preparation and Characterization of Carvacrol-Loaded Caseinate/Zein-Composite Nanoparticles Using the Anti-Solvent Precipitation Method

Extending shelf life and maintaining the high quality of food are arduous challenges. In this study, the self-assembly properties of zein were used to load carvacrol essential oil, and then sodium caseinate was selected as a stabilizer to fabricate carvacrol-loaded composite nanoparticles. The resul...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Huaming, Wang, Jiangli, Zhang, Yiqiang, Xv, Quanwei, Zeng, Qiaohui, Wang, Jingjing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268631/
https://www.ncbi.nlm.nih.gov/pubmed/35808025
http://dx.doi.org/10.3390/nano12132189
Descripción
Sumario:Extending shelf life and maintaining the high quality of food are arduous challenges. In this study, the self-assembly properties of zein were used to load carvacrol essential oil, and then sodium caseinate was selected as a stabilizer to fabricate carvacrol-loaded composite nanoparticles. The results showed that the composite nanoparticles had a high encapsulation efficiency for carvacrol (71.52–80.09%). Scanning electron microscopy (SEM) indicated that the carvacrol-loaded composite nanoparticles were spherical and uniformly distributed, with particle sizes ranging from 80 to 220 nm. First and foremost, the carvacrol-loaded nanoparticles exhibited excellent water-redispersibility, storage-stability, and antioxidant properties, as well as antibacterial properties against Staphylococcus aureus and Escherichia coli. Benefiting from the antimicrobial and antioxidative abilities, the films with carvacrol-loaded composite nanoparticles effectively inhibited food spoilage and prolonged the shelf-life of cherry tomatoes and bananas. Therefore, carvacrol-loaded composite nanoparticles may have potential application prospects in the food industry.