Cargando…
CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition
Speech is a complex mechanism allowing us to communicate our needs, desires and thoughts. In some cases of neural dysfunctions, this ability is highly affected, which makes everyday life activities that require communication a challenge. This paper studies different parameters of an intelligent imag...
Autores principales: | Rusnac, Ana-Luiza, Grigore, Ovidiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268757/ https://www.ncbi.nlm.nih.gov/pubmed/35808173 http://dx.doi.org/10.3390/s22134679 |
Ejemplares similares
-
On the Speech Properties and Feature Extraction Methods in Speech Emotion Recognition
por: Kacur, Juraj, et al.
Publicado: (2021) -
A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification
por: Lun, Xiangmin, et al.
Publicado: (2023) -
EEG Classification of Different Imaginary Movements within the Same Limb
por: Yong, Xinyi, et al.
Publicado: (2015) -
Deep-Net: A Lightweight CNN-Based Speech Emotion Recognition System Using Deep Frequency Features
por: Anvarjon, Tursunov, et al.
Publicado: (2020) -
Enhanced Feature Extraction-based CNN Approach for Epileptic Seizure Detection from EEG Signals
por: Dhar, Puja, et al.
Publicado: (2022)