Cargando…
Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine
Crops and ecosystems constantly change, and risks are derived from heavy rains, hurricanes, droughts, human activities, climate change, etc. This has caused additional damages with economic and social impacts. Natural phenomena have caused the loss of crop areas, which endangers food security, destr...
Autores principales: | Pech-May, Fernando, Aquino-Santos, Raúl, Rios-Toledo, German, Posadas-Durán, Juan Pablo Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268769/ https://www.ncbi.nlm.nih.gov/pubmed/35808225 http://dx.doi.org/10.3390/s22134729 |
Ejemplares similares
-
Mapping and monitoring land use land cover dynamics employing Google Earth Engine and machine learning algorithms on Chattogram, Bangladesh
por: Biswas, Jayanta, et al.
Publicado: (2023) -
Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing
por: Midekisa, Alemayehu, et al.
Publicado: (2017) -
Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA- artificial neural network model
por: Osman, Maysoon A. A., et al.
Publicado: (2023) -
Mapping and spatiotemporal dynamics of land-use and land-cover change based on the Google Earth Engine cloud platform from Landsat imagery: A case study of Zhoushan Island, China
por: Chen, Chao, et al.
Publicado: (2023) -
Using Google Maps and Google Earth
por: Miller, Michael
Publicado: (2011)