Cargando…
Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks
This paper proposes a novel inverse method based on the deep convolutional neural network (ConvNet) to extract snow’s layer thickness and temperature via passive microwave remote sensing (PMRS). The proposed ConvNet is trained using simulated data obtained through conventional computational electrom...
Autores principales: | Yao, Heming, Zhang, Yanming, Jiang, Lijun, Ewe, Hong Tat, Ng, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268846/ https://www.ncbi.nlm.nih.gov/pubmed/35808266 http://dx.doi.org/10.3390/s22134769 |
Ejemplares similares
-
Solving Challenges of Assimilating Microwave Remote Sensing Signatures With a Physical Model to Estimate Snow Water Equivalent
por: Merkouriadi, Ioanna, et al.
Publicado: (2021) -
Microwave Propagation and Remote Sensing
por: Karmakar, Pranab
Publicado: (2017) -
The Face Inversion Effect in Deep Convolutional Neural Networks
por: Tian, Fang, et al.
Publicado: (2022) -
Microwave radar and radiometric remote sensing
por: Ulaby, Fawwaz, et al.
Publicado: (2015) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020)