Cargando…
Microstructure Analysis of Drawing Effect and Mechanical Properties of Polyacrylonitrile Precursor Fiber According to Molecular Weight
Polyacrylonitrile (PAN) fiber is the most widely used carbon fiber precursor, and methyl acrylate (MA) copolymer is widely used for research and commercial purposes. The properties of P (AN-MA) fibers improve increasingly as the molecular weight increases, but high-molecular-weight materials have so...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268880/ https://www.ncbi.nlm.nih.gov/pubmed/35808684 http://dx.doi.org/10.3390/polym14132625 |
Sumario: | Polyacrylonitrile (PAN) fiber is the most widely used carbon fiber precursor, and methyl acrylate (MA) copolymer is widely used for research and commercial purposes. The properties of P (AN-MA) fibers improve increasingly as the molecular weight increases, but high-molecular-weight materials have some limitations with respect to the manufacturing process. In this study, P (AN-MA) precursor fibers of different molecular weights were prepared and analyzed to identify an efficient carbon fiber precursor manufacturing process. The effects of the molecular weight of P (AN-MA) on its crystallinity and void structure were examined, and precursor fiber content and process optimizations with respect to molecular weight were conducted. The mechanical properties of high-molecular-weight P (AN-MA) were good, but the internal structure of the high-molecular-weight material was not the best because of differences in molecular entanglement and mobility. The structural advantages of a relatively low molecular weight were confirmed. The findings of this study can help in the manufacturing of precursor fibers and carbon fibers with improved properties. |
---|