Cargando…
Influence of Stress Level and Fibre Volume Fraction on Fatigue Performance of Glass Fibre-Reinforced Polyester Composites
Fibre-reinforced polymeric composite materials are becoming substantial and convenient materials in the repair and replacement of traditional metallic materials due to their high stiffness. The composites undergo different types of fatigue loads during their service life. The drive to enhance the de...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268926/ https://www.ncbi.nlm.nih.gov/pubmed/35808709 http://dx.doi.org/10.3390/polym14132662 |
Sumario: | Fibre-reinforced polymeric composite materials are becoming substantial and convenient materials in the repair and replacement of traditional metallic materials due to their high stiffness. The composites undergo different types of fatigue loads during their service life. The drive to enhance the design methodologies and predictive models of fibre-reinforced polymeric composite materials subjected to fatigue stresses is reliant on more precise and reliable techniques for assessing their fatigue life. The influences of fibre volume fraction and stress level on the fatigue performance of glass fibre-reinforced polyester (GFRP) composite materials have been studied in the tension–tension fatigue scenario. The fibre volume fractions for this investigation were set to: 20%, 35%, and 50%. The tensile testing of specimens was performed using a universal testing machine and the Young’s modulus was validated with four different prediction models. In order to identify the modes of failure as well as the fatigue life of composites, polyester-based GFRP specimens were evaluated at five stress levels which were 75%, 65%, 50%, 40%, and 25% of the maximum tensile stress until either a fracture occurred or five million fatigue cycles was reached. The experimental results showed that glass fibre-reinforced polyester samples had a pure tension failure at high applied stress levels, while at low stress levels the failure mode was governed by stress levels. Finally, the experimental results of GFRP composite samples with different volume fractions were utilized for model validation and comparison, which showed that the proposed framework yields acceptable correlations of predicted fatigue lives in tension–tension fatigue regimes with experimental ones. |
---|