Cargando…

Biopriming of Maize Seeds with a Novel Bacterial Strain SH-6 to Enhance Drought Tolerance in South Korea

Maize is the third most common cereal crop worldwide, after rice and wheat, and plays a vital role in preventing global hunger crises. Approximately 50% of global crop yields are reduced by drought stress. Bacteria as biostimulants for biopriming can improve yield and enhance sustainable food produc...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaffique, Shifa, Khan, Muhammad Aaqil, Wani, Shabir Hussain, Imran, Muhammad, Kang, Sang-Mo, Pande, Anjali, Adhikari, Arjun, Kwon, Eun-Hae, Lee, In-Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268940/
https://www.ncbi.nlm.nih.gov/pubmed/35807630
http://dx.doi.org/10.3390/plants11131674
Descripción
Sumario:Maize is the third most common cereal crop worldwide, after rice and wheat, and plays a vital role in preventing global hunger crises. Approximately 50% of global crop yields are reduced by drought stress. Bacteria as biostimulants for biopriming can improve yield and enhance sustainable food production. Further, seed biopriming stimulates plant defense mechanisms. In this study, we isolated bacteria from the rhizosphere of Artemisia plants from Pohang beach, Daegu, South Korea. Twenty-three isolates were isolated and screened for growth promoting potential. Among them, bacterial isolate SH-6 was selected based on maximum induced tolerance to polyethylene glycol-simulated drought. SH-6 showed ABA concentration = 1.06 ± 0.04 ng/mL, phosphate solubilizing index = 3.7, and sucrose concentration = 0.51 ± 0.13 mg/mL. The novel isolate SH-6 markedly enhanced maize seedling tolerance to oxidative stress owing to the presence of superoxide dismutase, catalase, and ascorbate peroxidase activities in the culture media. Additionally, we quantified and standardized the biopriming effect of SH-6 on maize seeds. SH-6 significantly increased maize seedling drought tolerance by up to 20%, resulting in 80% germination potential. We concluded that the novel bacterium isolate SH-6 (gene accession number (OM757882) is a biostimulant that can improve germination performance under drought stress.