Cargando…
A Hybrid Service Selection and Composition for Cloud Computing Using the Adaptive Penalty Function in Genetic and Artificial Bee Colony Algorithm
The rapid development of Cloud Computing (CC) has led to the release of many services in the cloud environment. Service composition awareness of Quality of Service (QoS) is a significant challenge in CC. A single service in the cloud environment cannot respond to the complex requests and diverse req...
Autores principales: | Sefati, Seyed Salar, Halunga, Simona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268948/ https://www.ncbi.nlm.nih.gov/pubmed/35808368 http://dx.doi.org/10.3390/s22134873 |
Ejemplares similares
-
An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection
por: Chen, Wei
Publicado: (2014) -
A New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps
por: Mao, Wei, et al.
Publicado: (2016) -
A Multistrategy Optimization Improved Artificial Bee Colony Algorithm
por: Liu, Wen
Publicado: (2014) -
MS Location Estimation Based on the Artificial Bee Colony Algorithm
por: Chen, Chien-Sheng, et al.
Publicado: (2020) -
Maximum power point tracking of PEMFC based on hybrid artificial bee colony algorithm with fuzzy control
por: Fan, Liping, et al.
Publicado: (2022)