Cargando…
Decoupling RNN Training and Testing Observation Intervals for Spectrum Sensing Applications
Recurrent neural networks have been shown to outperform other architectures when processing temporally correlated data, such as from wireless communication signals. However, compared to other architectures, such as convolutional neural networks, recurrent neural networks can suffer from drastically...
Autores principales: | Moore, Megan O., Buehrer, R. Michael, Headley, William Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269017/ https://www.ncbi.nlm.nih.gov/pubmed/35808202 http://dx.doi.org/10.3390/s22134706 |
Ejemplares similares
-
RNN for stop search in ATLAS
por: Arrubarrena Tame, Zulit Paola
Publicado: (2019) -
Multimodal Sensors with Decoupled Sensing Mechanisms
por: Yang, Ruoxi, et al.
Publicado: (2022) -
Graph MADDPG with RNN for multiagent cooperative environment
por: Wei, Xiaolong, et al.
Publicado: (2023) -
Decoupling Drupal: a decoupled design approach for web applications
por: Mayekar, Deepali
Publicado: (2017) -
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020)