Cargando…

Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites

In this paper, the one-dimensional tensile behavior of Guadua angustifolia Kunth fibre/polypropylene (PP+GAK(S)) composites is modeled. The classical model of Kelly–Tyson and its Bowyer–Bader’s solution is not able to reproduce the entire stress–strain curve of the composite. An integral (In-Built)...

Descripción completa

Detalles Bibliográficos
Autores principales: Fajardo, Jorge I., Costa, Josep, Cruz, Luis J., Paltán, César A., Santos, Jonnathan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269109/
https://www.ncbi.nlm.nih.gov/pubmed/35808674
http://dx.doi.org/10.3390/polym14132627
_version_ 1784744152466980864
author Fajardo, Jorge I.
Costa, Josep
Cruz, Luis J.
Paltán, César A.
Santos, Jonnathan D.
author_facet Fajardo, Jorge I.
Costa, Josep
Cruz, Luis J.
Paltán, César A.
Santos, Jonnathan D.
author_sort Fajardo, Jorge I.
collection PubMed
description In this paper, the one-dimensional tensile behavior of Guadua angustifolia Kunth fibre/polypropylene (PP+GAK(S)) composites is modeled. The classical model of Kelly–Tyson and its Bowyer–Bader’s solution is not able to reproduce the entire stress–strain curve of the composite. An integral (In-Built) micromechanical model proposed by Isitman and Aykol, initially for synthetic fiber-reinforced composites, was applied to predict micromechanical parameters in short natural fiber composites. The proposed method integrates both the information of the experimental stress-strain curves and the morphology of the fiber bundles within the composite to estimate the interfacial shear strength (IFSS), fiber orientation efficiency factor [Formula: see text] , fiber length efficiency factor [Formula: see text] and critical fiber length [Formula: see text]. It was possible to reproduce the stress-strain curves of the PP+GAK(S) composite with low residual standard deviation. A methodology was applied using X-ray microtomography and digital image processing techniques for the precise extraction of the micromechanical parameters involved in the model. The results showed good agreement with the experimental data.
format Online
Article
Text
id pubmed-9269109
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92691092022-07-09 Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites Fajardo, Jorge I. Costa, Josep Cruz, Luis J. Paltán, César A. Santos, Jonnathan D. Polymers (Basel) Article In this paper, the one-dimensional tensile behavior of Guadua angustifolia Kunth fibre/polypropylene (PP+GAK(S)) composites is modeled. The classical model of Kelly–Tyson and its Bowyer–Bader’s solution is not able to reproduce the entire stress–strain curve of the composite. An integral (In-Built) micromechanical model proposed by Isitman and Aykol, initially for synthetic fiber-reinforced composites, was applied to predict micromechanical parameters in short natural fiber composites. The proposed method integrates both the information of the experimental stress-strain curves and the morphology of the fiber bundles within the composite to estimate the interfacial shear strength (IFSS), fiber orientation efficiency factor [Formula: see text] , fiber length efficiency factor [Formula: see text] and critical fiber length [Formula: see text]. It was possible to reproduce the stress-strain curves of the PP+GAK(S) composite with low residual standard deviation. A methodology was applied using X-ray microtomography and digital image processing techniques for the precise extraction of the micromechanical parameters involved in the model. The results showed good agreement with the experimental data. MDPI 2022-06-28 /pmc/articles/PMC9269109/ /pubmed/35808674 http://dx.doi.org/10.3390/polym14132627 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fajardo, Jorge I.
Costa, Josep
Cruz, Luis J.
Paltán, César A.
Santos, Jonnathan D.
Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
title Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
title_full Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
title_fullStr Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
title_full_unstemmed Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
title_short Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
title_sort micromechanical model for predicting the tensile properties of guadua angustifolia fibers polypropylene-based composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269109/
https://www.ncbi.nlm.nih.gov/pubmed/35808674
http://dx.doi.org/10.3390/polym14132627
work_keys_str_mv AT fajardojorgei micromechanicalmodelforpredictingthetensilepropertiesofguaduaangustifoliafiberspolypropylenebasedcomposites
AT costajosep micromechanicalmodelforpredictingthetensilepropertiesofguaduaangustifoliafiberspolypropylenebasedcomposites
AT cruzluisj micromechanicalmodelforpredictingthetensilepropertiesofguaduaangustifoliafiberspolypropylenebasedcomposites
AT paltancesara micromechanicalmodelforpredictingthetensilepropertiesofguaduaangustifoliafiberspolypropylenebasedcomposites
AT santosjonnathand micromechanicalmodelforpredictingthetensilepropertiesofguaduaangustifoliafiberspolypropylenebasedcomposites