Cargando…
Through-Ice Acoustic Source Tracking Using Vision Transformers with Ordinal Classification
Ice environments pose challenges for conventional underwater acoustic localization techniques due to their multipath and non-linear nature. In this paper, we compare different deep learning networks, such as Transformers, Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks,...
Autores principales: | Whitaker, Steven, Barnard, Andrew, Anderson, George D., Havens, Timothy C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269127/ https://www.ncbi.nlm.nih.gov/pubmed/35808200 http://dx.doi.org/10.3390/s22134703 |
Ejemplares similares
-
EnViTSA: Ensemble of Vision Transformer with SpecAugment for Acoustic Event Classification
por: Lim, Kian Ming, et al.
Publicado: (2023) -
Feasibility of Tracking Fish with Acoustic Transmitters in the Ice Harbor Dam Tailrace
por: Ingraham, John M., et al.
Publicado: (2014) -
Diagnostic Classification Models for Ordinal Item Responses
por: Liu, Ren, et al.
Publicado: (2018) -
Ordinal losses for classification of cervical cancer risk
por: Albuquerque, Tomé, et al.
Publicado: (2021) -
Looking through the Ice: Cold-Adapted Vision in Antarctic Icefish
por: McGrath, Casey
Publicado: (2023)