Cargando…
CGR-Block: Correlated Feature Extractor and Geometric Feature Fusion for Point Cloud Analysis
Point cloud processing based on deep learning is developing rapidly. However, previous networks failed to simultaneously extract inter-feature interaction and geometric information. In this paper, we propose a novel point cloud analysis module, CGR-block, which mainly uses two units to learn point c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269159/ https://www.ncbi.nlm.nih.gov/pubmed/35808371 http://dx.doi.org/10.3390/s22134878 |
Sumario: | Point cloud processing based on deep learning is developing rapidly. However, previous networks failed to simultaneously extract inter-feature interaction and geometric information. In this paper, we propose a novel point cloud analysis module, CGR-block, which mainly uses two units to learn point cloud features: correlated feature extractor and geometric feature fusion. CGR-block provides an efficient method for extracting geometric pattern tokens and deep information interaction of point features on disordered 3D point clouds. In addition, we also introduce a residual mapping branch inside each CGR-block module for the further improvement of the network performance. We construct our classification and segmentation network with CGR-block as the basic module to extract features hierarchically from the original point cloud. The overall accuracy of our network on the ModelNet40 and ScanObjectNN benchmarks achieves 94.1% and 83.5%, respectively, and the instance mIoU on the ShapeNet-Part benchmark also achieves 85.5%, proving the superiority of our method. |
---|