Cargando…
CGR-Block: Correlated Feature Extractor and Geometric Feature Fusion for Point Cloud Analysis
Point cloud processing based on deep learning is developing rapidly. However, previous networks failed to simultaneously extract inter-feature interaction and geometric information. In this paper, we propose a novel point cloud analysis module, CGR-block, which mainly uses two units to learn point c...
Autores principales: | Wang, Fan, Zhao, Yingxiang, Shi, Gang, Cui, Qing, Cao, Tengfei, Jiang, Xian, Hou, Yongjie, Zhuang, Rujun, Mei, Yunfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269159/ https://www.ncbi.nlm.nih.gov/pubmed/35808371 http://dx.doi.org/10.3390/s22134878 |
Ejemplares similares
-
R-YOLO: A YOLO-Based Method for Arbitrary-Oriented Target Detection in High-Resolution Remote Sensing Images
por: Hou, Yongjie, et al.
Publicado: (2022) -
DCGR: feature extractions from protein sequences based on CGR via remodeling multiple information
por: Mu, Zengchao, et al.
Publicado: (2019) -
An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features
por: He, Ying, et al.
Publicado: (2017) -
CGR MeV - Thomson group
por: Anderberg, B
Publicado: (1987) -
A Model for Infrastructure Detection along Highways Based on Remote Sensing Images from UAVs
por: Jiang, Xian, et al.
Publicado: (2023)