Cargando…

Pro-197-Ser Mutation and Cytochrome P450-Mediated Metabolism Conferring Resistance to Flucarbazone-Sodium in Bromus japonicus

In crop fields, resistance to acetolactate synthase (ALS)-inhibiting herbicides found in many troublesome weed species, including Bromus japonicus Thunb, is a worldwide problem. In particular, the development of herbicide resistance in B. japonicus is a severe threat to wheat production in China. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Yuning, Zhou, Xinxin, Lin, Shenyuan, Cao, Yi, Wei, Shouhui, Huang, Hongjuan, Li, Wenyu, Huang, Zhaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269166/
https://www.ncbi.nlm.nih.gov/pubmed/35807593
http://dx.doi.org/10.3390/plants11131641
Descripción
Sumario:In crop fields, resistance to acetolactate synthase (ALS)-inhibiting herbicides found in many troublesome weed species, including Bromus japonicus Thunb, is a worldwide problem. In particular, the development of herbicide resistance in B. japonicus is a severe threat to wheat production in China. The purpose of this research was to investigate the physiological and molecular basis of B. japonicus resistance to flucarbazone-sodium. Dose-response analysis demonstrated that, compared with the susceptible B. japonicus (S) population, the resistant (R) population exhibited a 120-fold increase in flucarbazone-sodium resistance. Nucleotide sequence alignment of the ALS gene indicated that the Pro-197-Ser mutation in ALS was associated with resistance to flucarbazone-sodium in the R population. The results of a malathion pretreatment study showed that B. japonicus might also have remarkable cytochrome P450 monooxygenase (P450)-mediated metabolic resistance. This is the first report of a Pro-197-Ser mutation and P450-mediated metabolism conferring resistance to flucarbazone-sodium in B. japonicus.