Cargando…
RMHIL: A Rule Matching Algorithm Based on Heterogeneous Integrated Learning in Software Defined Network
To ensure the efficient operation of large-scale networks, the flow scheduling in the software defined network (SDN) requires the matching time and memory overhead of rule matching to be as low as possible. To meet the requirement, we solve the rule matching problem by integrating machine learning m...
Autores principales: | Guo, Yiping, Hu, Guyu, Shao, Dongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269192/ https://www.ncbi.nlm.nih.gov/pubmed/35808236 http://dx.doi.org/10.3390/s22134739 |
Ejemplares similares
-
QOGMP: QoS-oriented global multi-path traffic scheduling algorithm in software defined network
por: Guo, Yiping, et al.
Publicado: (2022) -
Multi-Path Routing Algorithm for Wireless Sensor Network Based on Semi-Supervised Learning
por: Guo, Yiping, et al.
Publicado: (2022) -
Multi-Objective Optimisation in Multi-QoS Routing Strategy for Software-Defined Satellite Network
por: Wu, Yang, et al.
Publicado: (2021) -
WildMinnie: compression of software-defined networking (SDN) rules with wildcard patterns
por: Khanmirza, Hamed
Publicado: (2022) -
Augmenting Speech Quality Estimation in Software-Defined Networking Using Machine Learning Algorithms
por: Rozhon, Jan, et al.
Publicado: (2021)