Cargando…

Seed Transmission of Pathogens: Non-Canonical Immune Response in Arabidopsis Germinating Seeds Compared to Early Seedlings against the Necrotrophic Fungus Alternaria brassicicola

The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortega-Cuadros, Mailen, De Souza, Tiago Lodi, Berruyer, Romain, Aligon, Sophie, Pelletier, Sandra, Renou, Jean-Pierre, Arias, Tatiana, Campion, Claire, Guillemette, Thomas, Verdier, Jérome, Grappin, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269218/
https://www.ncbi.nlm.nih.gov/pubmed/35807659
http://dx.doi.org/10.3390/plants11131708
Descripción
Sumario:The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level the responses of germinating seeds and young seedling stages to infection by the necrotrophic fungus. RNA-seq analyses of healthy versus inoculated seeds at 3 days after sowing (DAS), stage of radicle emergence, and at 6 and 10 DAS, two stages of seedling establishment, identified thousands of differentially expressed genes by Alternaria infection. Response to hypoxia, ethylene and indole pathways were found to be induced by Alternaria in the germinating seeds. However, surprisingly, the defense responses, namely the salicylic acid (SA) pathway, the response to reactive oxygen species (ROS), the endoplasmic reticulum-associated protein degradation (ERAD) and programmed cell death, were found to be strongly induced only during the latter post-germination stages. We propose that this non-canonical immune response in early germinating seeds compared to early seedling establishment was potentially due to the seed-to-seedling transition phase. Phenotypic analyses of about 14 mutants altered in the main defense pathways illustrated these specific defense responses. The unexpected germination deficiency and insensitivity to Alternaria in the glucosinolate deficient mutants allow hypothesis of a trade-off between seed germination, necrosis induction and Alternaria transmission to the seedling. The imbalance of the SA and jasmonic acid (JA) pathways to the detriment of the JA also illustrated a non-canonical immune response at the first stages of the seedling.